Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kometeneis im Labor

30.05.2016

Poröses Eis, wie es im Weltall überall zu finden ist, haben der Innsbrucker Chemiker Thomas Lörting und sein Team näher unter die Lupe genommen. In der Fachzeitschrift Physical Review Letters berichten die Forscher, wie sie das amorphe Eis beim Aufwärmen beobachtet haben. Die als mögliche Geburtsstätte des Lebens geltenden Eisstrukturen zeigen dabei ein überraschendes Verhalten.

Als die Raumsonde Rosetta im November 2014 den Lander Philae auf den Kometen Tschurjumow-Gerassimenko – kurz Tschuri – niedergehen ließ, war die Spannung groß. Zum ersten Mal war die Menschheit einem dieser durchs Weltall fliegenden Staub- und Eisriesen so nahegekommen.


Blick in die Versuchanordnung am Rutherford Appleton Laboratory in Großbritannien.

Uni Innsbruck

Die folgenden Untersuchungen drehten sich vor allem um das Wasser auf dem Kometen und die Suche nach organischen Verbindungen, die einen Hinweis auf den Ursprung des Lebens geben könnten. „Im Weltall liegt Wasser zu einem sehr großen Teil als amorphes Eis vor“, erklärt Thomas Lörting vom Institut für Physikalische Chemie der Universität Innsbruck.

„Wenn sich Wassermoleküle an der extrem kalten Oberfläche des interstellaren Staubs ablagern, bildet sich Eis mit einer mikroporösen Struktur, die über eine riesige Oberfläche verfügt. Ein Gramm dieses Materials könnte man auf 500 Quadratmeter ausrollen.“

Dieses mit Aktivkohle vergleichbare Eis wirkt im Weltall wie ein Staubsauger, der alle Moleküle in der Umgebung aufnimmt und in den feinen Poren einlagert. Dort sind die Moleküle vor der harten Strahlung im All geschützt. Es gibt deshalb Vermutungen, dass die ersten Moleküle des Lebens, wie Peptide und Proteine, dort entstanden sein könnten.

Geburtsstätte des Lebens?

Thomas Lörting und sein Team haben nun im Labor untersucht, welche Bedingungen in diesen Eis-Poren herrschen. „Wenn Kometen auf die Sonne zufliegen, erwärmt sich das Eis und erweicht“, sagt der Chemiker. „Wir wollten uns das im Detail anschauen und haben das amorphe Eis mit einer ganz neuen Methode näher untersucht.“

Die in einem von Lörtings Team entwickelten Verfahren an der Uni Innsbruck hergestellten Proben wurden dazu nach England überführt und dort im Rutherford Appleton Laboratory in der Nähe von Oxford in einem gepulsten Neutronenreaktor analysiert. „Anhand der Kleinwinkelstreuung lässt sich die Porenstruktur des Eises sehr gut erkennen“, erzählt Lörting.

Gemeinsam mit Kollegen von der Open University in Milton Keynes untersuchten die Innsbrucker Forscher nun, bei welchen Temperaturen und wie genau sich die Mikroporen des Eises verändern: „Die anfangs rauen, zylinderförmigen Poren des Eises werden zunächst glatt und sacken dann in sich zusammen“, schildert Thomas Lörting seine Beobachtungen. „Man kann sich das vorstellen, wie einen Joghurtbecher, der im Backrohr langsam zusammensackt.“ Das Eis bildet dann lamellenförmige, zweidimensionale Strukturen aus. Gleichzeitig reduziert sich die Oberfläche auf weniger als ein Quadratmeter pro Gramm.

Flüssiges Wasser

Eine wichtige weitere Entdeckung: Oberhalb einer Temperatur von minus 150 Grad Celsius bildet sich flüssiges Wasser, das erst bei minus 120 Grad auskristallisiert und die in den Poren gesammelten Moleküle freigibt. Diese bilden beim Flug zur Sonne den für Kometen charakteristischen Schweif. „Die zweidimensionalen Strukturen und das flüssige Wasser bei so extrem tiefen Temperaturen sind eine sehr spezielle Umgebung für chemische Prozesse. Wir wollen in einem nächsten Schritt diese Prozesse mit im Eis eingelagerten Molekülen näher untersuchen“, blickt Lörting bereits in die Zukunft.

Die von den Chemikern im Labor gesammelten Daten sind wichtig für die Kometenforschung, umgekehrt wartet das Innsbrucker Forschungsteam gespannt auf weitere Daten der Rosetta-Mission. „Unter seiner staubigen Haut besteht Tschuri zu einem großen Teil aus diesem amorphen Eis. Messungen der ESA-Sonde sind deshalb für uns von großem Interesse“, sagt Lörting.

Die Experimente von Lörtings Team fanden im Rahmen der Forschungsplattform Material- und Nanowissenschaften der Universität Innsbruck statt und wurden unter anderem vom österreichischen Wissenschaftsfonds FWF und dem ESF Forschungsnetzwerk Micro-DICE finanziell unterstützt.

Publikation: Neutron Scattering Analysis of Water’s Glass Transition and Micropore Collapse in Amorphous Solid Water. Catherine R. Hill, Christian Mitterdorfer, Tristan G. A. Youngs, Daniel T. Bowron, Helen J. Fraser, and Thomas Loerting. Phys. Rev. Lett. 116, 215501
DOI: 10.1103/PhysRevLett.116.215501

Kontakt:
assoz. Prof. Dr. Thomas Lörting
Institut für Physikalische Chemie
Universität Innsbruck
Tel.: +43 512 507 58019
E-Mail: thomas.loerting@uibk.ac.at

Dr. Christian Flatz
Büro für Öffentlichkeitsarbeit
Universität Innsbruck
Tel.: +43 512 507 32022
E-Mail: christian.flatz@uibk.ac.at

Weitere Informationen:

http://homepage.uibk.ac.at/~c724117/ - Forschungsgruppe Thomas Lörting
http://www.uibk.ac.at/physchem/ - Institut für Physikalische Chemie
http://www.uibk.ac.at/advancedmaterials/ - Forschungsplattform Material- und Nanowissenschaften (Advanced Materials)

Dr. Christian Flatz | Universität Innsbruck

Weitere Berichte zu: Innsbrucker Kometen Moleküle Nanowissenschaften

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

nachricht Sternenstaub reist häufiger in Meteoriten mit als gedacht
15.08.2017 | Max-Planck-Institut für Chemie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Wissenschaftler beleuchten den „anderen Hochtemperatur-Supraleiter“

Eine von Wissenschaftlern des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) geleitete Studie zeigt, dass Supraleitung und Ladungsdichtewellen in Verbindungen der wenig untersuchten Familie der Bismutate koexistieren können.

Diese Beobachtung eröffnet neue Perspektiven für ein vertieftes Verständnis des Phänomens der Hochtemperatur-Supraleitung, ein Thema, welches die Forschung der...

Im Focus: Tests der Quantenmechanik mit massiven Teilchen

Quantenmechanische Teilchen können sich wie Wellen verhalten und mehrere Wege gleichzeitig nehmen, um an ihr Ziel zu gelangen. Dieses Prinzip basiert auf Borns Regel, einem Grundpfeiler der Quantenmechanik; eine mögliche Abweichung hätte weitreichende Folgen und könnte ein Indikator für neue Phänomene in der Physik sein. WissenschafterInnen der Universität Wien und Tel Aviv haben nun diese Regel explizit mit Materiewellen überprüft, indem sie massive Teilchen an einer Kombination aus Einzel-, Doppel- und Dreifachspalten interferierten. Die Analyse bestätigt den Formalismus der etablierten Quantenmechanik und wurde im Journal "Science Advances" publiziert.

Die Quantenmechanik beschreibt sehr erfolgreich das Verhalten von Partikeln auf den kleinsten Masse- und Längenskalen. Die offensichtliche Unvereinbarkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

Anbausysteme im Wandel: Europäische Ackerbaubetriebe müssen sich anpassen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Einblicke in die Welt der Trypanosomen

16.08.2017 | Biowissenschaften Chemie

Maschinensteuerung an Anwender: Intelligentes System für mobile Endgeräte in der Fertigung

16.08.2017 | Informationstechnologie

Komfortable Software für die Genomanalyse

16.08.2017 | Informationstechnologie