Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kometen entstehen in kosmischen Staubfallen

11.06.2013
Daten des neuen Teleskops ALMA beweisen Theorien von Heidelberger Wissenschaftlern

Ein altes Rätsel der Entstehung von Kometen haben Astrophysiker der Universität Heidelberg mithilfe von Beobachtungen am Atacama Large Millimeter Array (ALMA) in Chile gelöst. Mit Daten dieses neuen Teleskops der Europäischen Südsternwarte, eines der leistungsfähigsten Teleskope der Welt, konnte die Existenz sogenannter Staubfallen als mögliche Geburtsstätte von Kometen bewiesen werden. Zugleich wurden damit Theorien von Heidelberger Wissenschaftlern bestätigt.

„Diese Erkenntnisse aus den aktuellen Untersuchungen sind ein Meilenstein in unserem Verständnis der Entstehung von Kometen und letztlich auch Planeten“, erklärt Prof. Dr. Cornelis Dullemond vom Zentrum für Astronomie der Universität Heidelberg. Die Forschungsergebnisse wurden in der Fachzeitschrift „Science“ veröffentlicht.

Bei der Frage nach der Entstehung von Kometen und Planeten gehen Astronomen davon aus, dass sich winzige Partikel in der Umlaufbahn um einen jungen Stern – der sogenannte kosmische Staub – innerhalb von Millionen von Jahren allmählich immer mehr verklumpen. Dadurch entstehen immer größere Objekte wie Kometen und am Ende auch Planeten. Allerdings pulverisieren sich diese Bausteine untereinander immer wieder durch heftige Zusammenstöße oder driften allmählich in den zentralen Stern und werden dort zerstört.

Zur Frage, wie dennoch Kometen oder Planeten entstehen können, haben Prof. Dullemond und sein Team einen theoretischen Ansatz mit Hilfe aufwendiger Computersimulationen überprüft. Demnach sind junge Sterne anfänglich von riesigen Staubscheiben umgeben. Ihr Durchmesser kann dabei ein Vielfaches des Durchmessers unseres Sonnensystems betragen. „Diese Scheiben sind jedoch nicht glatt wie ein Frisbee, sondern ähneln eher den Saturnringen mit ihren Lücken und Verdichtungen“, sagt Paola Pinilla, die Doktorandin in Prof. Dullemonds Arbeitsgruppe ist.

Mit Hilfe ihrer Simulationen am Computer hat die aus Kolumbien stammende Wissenschaftlerin diese Zonen genauer betrachtet und herausgefunden, dass sich am Rand solcher Ringe unter bestimmten Bedingungen Wirbel ausbilden können. Ihre Untersuchungen zeigen, dass in diesen Wirbeln, die Millionen Jahre lang stabil bestehen können, alle milimeter-großen Staubteilchen eingefangen werden. Da sich dort eine wesentlich höhere Dichte von solchen Teilchen bildet, werden diese Bereiche auch als Staubfallen bezeichnet. Zudem sind die Zentren dieser Wirbel sehr ruhige Zonen, so dass sich größere und beständigere Bausteine bilden können.

Mit diesem Forschungsansatz wird eine Theorie fortgeführt, nach der Wirbel als Staubfallen fungieren. Diese Theorie wurde schon in den 1990er Jahren von den Astrophysikern Dr. Hubert Klahr und Prof. Dr. Thomas Henning entwickelt, die heute am Max-Planck-Institut für Astronomie in Heidelberg arbeiten. „Aber es gab bis jetzt keine Beobachtungen, die ihre Existenz bewiesen haben“, sagt Prof. Dullemond. Diesen Beweis und den Nachweis für die Heidelberger Theorie, dass Staubfallen die Geburtsstätte von Kometen und Planeten sein können, lieferten jetzt Astronomen, die mit dem erst vor wenigen Wochen in Betrieb gegangenen Teleskop Atacama Large Millimeter Array gearbeitet haben.

Das Teleskop wurde mit speziellen Empfängern auf einer chilenischen Hochebene in rund 5.000 Metern Höhe errichtet und kann mit bisher unerreichter Präzision die Geburtsstätten junger Sterne und Planetensysteme untersuchen. Eine internationale Gruppe von Astronomen hat mit ALMA die Staubscheibe in einem Sternsystem mit der Bezeichnung Oph-IRS 48 erkundet. Das Team beobachtete, dass der Stern von einem Ring aus Gas umgeben ist. Dieser Gasring leuchtet aber nur auf einer Seite besonders stark in dem Licht, das üblicherweise millimetergroße Staubteilchen abstrahlt. Die Wissenschaftler konnten diese Beobachtung zunächst nicht interpretieren und wandten sich daher mit den Daten an die Heidelberger Forscher.

„Unsere Datenauswertung brachte den ersten Nachweis einer Staubfalle um einen jungen Stern, einer vermuteten und lange gesuchten Geburtsstätte von Kometen“, sagt Prof. Dullemond. Für ihre Modellrechnungen nutzten die Heidelberger Wissenschaftler ein Computerprogramm, das Dr. Til Birnstiel entwickelt hat. Dr. Birnstiel ist ein ehemaliger Doktorand von Prof. Dullemond und arbeitet jetzt am Harvard-Smithsonian Center for Astrophysics in den USA.

Der aktuellen Entdeckung liegen Daten zugrunde, die noch in der Testphase von ALMA mit nur einem Teil seiner vollen Leistungsfähigkeit gewonnen wurden. Daher rechnen die Astronomen damit, dass künftig noch spektakulärere Einblicke in die kosmische Planetenküche und damit auch in die Entstehung von Leben wie auf der Erde zu erwarten sind.

Originalveröffentlichung:
N. van der Marel, E. F. van Dishoeck, S. Bruderer, T. Birnstiel, P. Pinilla, C. P. Dullemond, T. A. van Kempen, M. Schmalzl, J. M. Brown, G. J. Herczeg, G. S. Mathews, V. Geers: A major asymmetric dust trap in a transition disk. Science (7 June 2013), Vol. 340 no. 6137, 1199-1202, DOI: 10.1126/science.1236770

Kontakt:
Dr. Guido Thimm
Zentrum für Astronomie der Universität Heidelberg
Telefon (06221) 54-1805
thimm@ari.uni-heidelberg.de

Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie