Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kolloidale Quasikristalle entdeckt

20.01.2011
Eine internationale Forschungsgruppe um Professor Stephan Förster, Universität Bayreuth, hat erstmals kolloidale Quasikristalle entdeckt.

Im Unterschied zu den bisher bekannten Quasikristallen, die sich nur unter speziellen Laborbedingungen herstellen lassen, handelt es sich um einfach strukturierte Polymere, die durch Selbstorganisation entstehen. Aufgrund ihrer Struktureigenschaften werden sie voraussichtlich bei der Entwicklung neuartiger Bauelemente in der Photonik zum Einsatz kommen können. Darüber berichten die beteiligten Wissenschaftler aus Bayreuth, Zürich, Hamburg und Grenoble in den "Proceedings of the National Academy of Sciences of the United States of America (PNAS)".


A: Beugungsbild eines kolloidalen Quasikristalls mit 12-zähliger Symmetrie; darunter das zugehörige Kachelungsmuster. – B: Beugungsbild eines kolloidalen Quasikristalls mit 18-zähliger Symmetrie; darunter wiederum das zugehörige Kachelungsmuster. - Das Kachelungsmuster stellt jeweils die lückenlose Gesamtstruktur dar.
Abbildungen: Lehrstuhl Physikalische Chemie I, Universität Bayreuth; mit Quellenangabe zur Veröffentlichung frei.

Ungewöhnliche symmetrische Strukturen,
in Beugungsexperimenten sichtbar gemacht
Quasikristalle zeichnen sich durch eine sehr ungewöhnliche Anordnung der Atome aus. In normalen Kristallen bilden die Atome geordnete periodische Strukturen; d.h. sie fügen sich zu einer lückenlosen Gesamtstruktur zusammen, in der sich ein einziges symmetrisches Muster regelmäßig wiederholt. Aus geometrischen Gründen sind dabei nur 1-, 2-, 3-, 4- und 6-zählige Symmetrien möglich. Diese Zahlenangabe besagt, wie oft sich eine Struktur in Winkeln zwischen 0 und 360 Grad so drehen lässt, dass sie mit sich selbst zur Deckung kommt. Anders verhält es sich bei Quasikristallen. Hier liegen geordnete aperiodische Strukturen vor; d.h. es gibt mindestens zwei verschiedene symmetrische Muster, die sich nicht regelmäßig wiederholen, aber trotzdem eine lückenlose Gesamtstruktur bilden. Unter dieser Voraussetzung können auch 8-, 10- oder 12-zählige Symmetrien vorkommen.

Diese strukturellen Unterschiede zwischen Kristallen und Quasikristallen lassen sich in Beugungsexperimenten mit elektromagnetischen Wellen sichtbar machen. Dabei entstehen Beugungsmuster, an denen sich ablesen lässt, wie Kristalle und Quasikristalle aufgebaut sind. Die erkennbaren symmetrischen Strukturen werden in der Forschung als Beugungssymmetrien bezeichnet.

Kolloidale Quasikristalle,
hervorgegangen aus Prozessen der Selbstorganisation
Bei den entdeckten kolloidalen Quasikristallen handelt es sich um Hydrogele, also um Polymere, die Wasser enthalten, aber selbst nicht wasserlöslich sind. Sie besitzen eine relativ einfache Struktur und kommen dadurch zustande, dass sich mehrere gleichartige "Bausteine" durch Selbstorganisation zusammenfügen. Diese "Bausteine" sind polymere Mizellen: kleine kugelförmige Gebilde mit Durchmessern zwischen 5 und 100 Nanometern, die ohne labortechnischen Aufwand in größerem Maßstab herstellbar sind. Deshalb sind kolloidale Quasikristalle für viele Wissenschaftler und auch für die Industrie leicht zugänglich.

Schon seit längerer Zeit untersucht die Arbeitsgruppe von Prof. Stephan Förster an der Universität Bayreuth polymere Mizellen, die sich zu Gitterstrukturen zusammenlagern können – und zwar auf Längenskalen von bis zu 100 Nanometern. Bei gemeinsamen Forschungsarbeiten am Institut Laue-Langevin in Grenoble und am DESY in Hamburg wurde nun kürzlich entdeckt, dass aus derartigen Prozessen der Selbstorganisation quasikristalline Gitterstrukturen hervorgehen können. In Beugungsexperimenten wurde nicht nur eine 12-zählige Symmetrie, sondern erstmals überhaupt eine 18-zählige Symmetrie beobachtet.

Perspektiven für innovative Anwendungen in der Photonik

Derartige Experimente sind keineswegs praxisferne "Glasperlenspiele" der Grundlagenforschung. Denn für hochzählige Beugungssymmetrien in kolloidalen Quasikristallen interessiert sich die Photonik, eine Disziplin der Physik, die auf die Entwicklung optischer Technologien für die Übertragung und Speicherung von Informationen abzielt. Es hat sich in den letzten Jahren herausgestellt, dass Strukturen mit hohen Beugungssymmetrien die Eigenschaft haben, Lichtstrahlen nur in bestimmte Richtungen durchzulassen. Sie sind ein besonders gut geeignetes Medium, wenn es darum geht, Lichtstrahlen von einer bestimmten Wellenlänge in vorab definierte Richtungen weiterzuleiten. Infolgedessen sind Strukturen mit hohen Beugungssymmetrien hochinteressant für die Herstellung photonischer Bauelemente.

Eignen sich also die jetzt entdeckten Hydrogele mit ihren hohen Beugungssymmetrien als "Baumaterialien" für die Photonik? Dafür muss noch eine Hürde überwunden werden: Die Photonik benötigt Strukturmerkmale von mehreren hundert Nanometern, während kolloidale Quasikristalle nicht über 100 Nanometer hinausreichen. Die Wissenschaftler in Bayreuth, Hamburg und Grenoble arbeiten daher derzeit intensiv daran, dass sich polymere Mizellen zu quasikristallinen Großstrukturen zusammenschließen, die in photonischen Bauelementen zum Einsatz kommen können. "Ich bin zuversichtlich, dass diese Bestrebungen schon bald zum Erfolg führen werden", erklärt Prof. Stephan Förster.

Quasikristalle – nicht länger eine Laborkuriosität

Kolloidale Quasikristalle sind daher voraussichtlich weit besser für Anwendungen in der Photonik geeignet als die ca. 100 quasikristallinen Verbindungen, die bisher bekannt waren. Hierbei handelt es sich fast ausschließlich um Metall-Legierungen, die nur in kleinen Mengen und unter speziellen Laborbedingungen hergestellt werden können. Zudem bewegen sich diese quasikristallinen Strukturen auf einer Größenskala zwischen 0,1 und 1 Nanometer und sind daher für den praktischen Einsatz in der Photonik erst recht zu winzig. Um quasikristalline Strukturen für die Photonik herzustellen, bedurfte es daher bisher sehr aufwändiger elektronen-lithographischer Verfahren. Dass Quasikristalle überhaupt existieren, wurde erstmals 1984 von einem Forschungsteam um den US-amerikanischen Physiker Dan Shechtman nachgewiesen. Danach galten Quasikristalle lange Zeit als eine Laborkuriosität, bis die Photonik auf deren ungewöhnliche Struktureigenschaften aufmerksam wurde.

Zu der internationalen Forschergruppe, die mit ihrer Entdeckung kolloidaler Quasikristalle jetzt an die Öffentlichkeit tritt, gehören zusammen mit Stephan Förster und seiner Forschergruppe an der Universität Bayreuth auch Prof. Walter Steurer und Dr. Sofia Deloudi (ETH Zürich), Dr. Peter Lindner (ILL Grenoble) und Dr. Jan Perlich (DESY Hamburg).

Veröffentlichung:

Steffen Fischer, Alexander Exner, Kathrin Zielske, Jan Perlich, Sofia Deloudi, Walter Steurer, Peter Lindner, Stephan Förster,
Colloidal quasicrystals with 12-fold and 18-fold diffraction symmetry,
in: Proceedings of the National Academy of Sciences of the United States of America (PNAS), PNAS published ahead of print January 11, 2011,

DOI-Bookmark: 10.1073/pnas.1008695108

Kontakt für weitere Informationen:

Prof. Dr. Stephan Förster
Lehrstuhl Physikalische Chemie I
Universität Bayreuth
D-95440 Bayreuth
Tel: +49 (0)921 / 55–2760
E-Mail (Sekr.): elisabeth.duengfelder@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise