Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kolloidale Quasikristalle entdeckt

20.01.2011
Eine internationale Forschungsgruppe um Professor Stephan Förster, Universität Bayreuth, hat erstmals kolloidale Quasikristalle entdeckt.

Im Unterschied zu den bisher bekannten Quasikristallen, die sich nur unter speziellen Laborbedingungen herstellen lassen, handelt es sich um einfach strukturierte Polymere, die durch Selbstorganisation entstehen. Aufgrund ihrer Struktureigenschaften werden sie voraussichtlich bei der Entwicklung neuartiger Bauelemente in der Photonik zum Einsatz kommen können. Darüber berichten die beteiligten Wissenschaftler aus Bayreuth, Zürich, Hamburg und Grenoble in den "Proceedings of the National Academy of Sciences of the United States of America (PNAS)".


A: Beugungsbild eines kolloidalen Quasikristalls mit 12-zähliger Symmetrie; darunter das zugehörige Kachelungsmuster. – B: Beugungsbild eines kolloidalen Quasikristalls mit 18-zähliger Symmetrie; darunter wiederum das zugehörige Kachelungsmuster. - Das Kachelungsmuster stellt jeweils die lückenlose Gesamtstruktur dar.
Abbildungen: Lehrstuhl Physikalische Chemie I, Universität Bayreuth; mit Quellenangabe zur Veröffentlichung frei.

Ungewöhnliche symmetrische Strukturen,
in Beugungsexperimenten sichtbar gemacht
Quasikristalle zeichnen sich durch eine sehr ungewöhnliche Anordnung der Atome aus. In normalen Kristallen bilden die Atome geordnete periodische Strukturen; d.h. sie fügen sich zu einer lückenlosen Gesamtstruktur zusammen, in der sich ein einziges symmetrisches Muster regelmäßig wiederholt. Aus geometrischen Gründen sind dabei nur 1-, 2-, 3-, 4- und 6-zählige Symmetrien möglich. Diese Zahlenangabe besagt, wie oft sich eine Struktur in Winkeln zwischen 0 und 360 Grad so drehen lässt, dass sie mit sich selbst zur Deckung kommt. Anders verhält es sich bei Quasikristallen. Hier liegen geordnete aperiodische Strukturen vor; d.h. es gibt mindestens zwei verschiedene symmetrische Muster, die sich nicht regelmäßig wiederholen, aber trotzdem eine lückenlose Gesamtstruktur bilden. Unter dieser Voraussetzung können auch 8-, 10- oder 12-zählige Symmetrien vorkommen.

Diese strukturellen Unterschiede zwischen Kristallen und Quasikristallen lassen sich in Beugungsexperimenten mit elektromagnetischen Wellen sichtbar machen. Dabei entstehen Beugungsmuster, an denen sich ablesen lässt, wie Kristalle und Quasikristalle aufgebaut sind. Die erkennbaren symmetrischen Strukturen werden in der Forschung als Beugungssymmetrien bezeichnet.

Kolloidale Quasikristalle,
hervorgegangen aus Prozessen der Selbstorganisation
Bei den entdeckten kolloidalen Quasikristallen handelt es sich um Hydrogele, also um Polymere, die Wasser enthalten, aber selbst nicht wasserlöslich sind. Sie besitzen eine relativ einfache Struktur und kommen dadurch zustande, dass sich mehrere gleichartige "Bausteine" durch Selbstorganisation zusammenfügen. Diese "Bausteine" sind polymere Mizellen: kleine kugelförmige Gebilde mit Durchmessern zwischen 5 und 100 Nanometern, die ohne labortechnischen Aufwand in größerem Maßstab herstellbar sind. Deshalb sind kolloidale Quasikristalle für viele Wissenschaftler und auch für die Industrie leicht zugänglich.

Schon seit längerer Zeit untersucht die Arbeitsgruppe von Prof. Stephan Förster an der Universität Bayreuth polymere Mizellen, die sich zu Gitterstrukturen zusammenlagern können – und zwar auf Längenskalen von bis zu 100 Nanometern. Bei gemeinsamen Forschungsarbeiten am Institut Laue-Langevin in Grenoble und am DESY in Hamburg wurde nun kürzlich entdeckt, dass aus derartigen Prozessen der Selbstorganisation quasikristalline Gitterstrukturen hervorgehen können. In Beugungsexperimenten wurde nicht nur eine 12-zählige Symmetrie, sondern erstmals überhaupt eine 18-zählige Symmetrie beobachtet.

Perspektiven für innovative Anwendungen in der Photonik

Derartige Experimente sind keineswegs praxisferne "Glasperlenspiele" der Grundlagenforschung. Denn für hochzählige Beugungssymmetrien in kolloidalen Quasikristallen interessiert sich die Photonik, eine Disziplin der Physik, die auf die Entwicklung optischer Technologien für die Übertragung und Speicherung von Informationen abzielt. Es hat sich in den letzten Jahren herausgestellt, dass Strukturen mit hohen Beugungssymmetrien die Eigenschaft haben, Lichtstrahlen nur in bestimmte Richtungen durchzulassen. Sie sind ein besonders gut geeignetes Medium, wenn es darum geht, Lichtstrahlen von einer bestimmten Wellenlänge in vorab definierte Richtungen weiterzuleiten. Infolgedessen sind Strukturen mit hohen Beugungssymmetrien hochinteressant für die Herstellung photonischer Bauelemente.

Eignen sich also die jetzt entdeckten Hydrogele mit ihren hohen Beugungssymmetrien als "Baumaterialien" für die Photonik? Dafür muss noch eine Hürde überwunden werden: Die Photonik benötigt Strukturmerkmale von mehreren hundert Nanometern, während kolloidale Quasikristalle nicht über 100 Nanometer hinausreichen. Die Wissenschaftler in Bayreuth, Hamburg und Grenoble arbeiten daher derzeit intensiv daran, dass sich polymere Mizellen zu quasikristallinen Großstrukturen zusammenschließen, die in photonischen Bauelementen zum Einsatz kommen können. "Ich bin zuversichtlich, dass diese Bestrebungen schon bald zum Erfolg führen werden", erklärt Prof. Stephan Förster.

Quasikristalle – nicht länger eine Laborkuriosität

Kolloidale Quasikristalle sind daher voraussichtlich weit besser für Anwendungen in der Photonik geeignet als die ca. 100 quasikristallinen Verbindungen, die bisher bekannt waren. Hierbei handelt es sich fast ausschließlich um Metall-Legierungen, die nur in kleinen Mengen und unter speziellen Laborbedingungen hergestellt werden können. Zudem bewegen sich diese quasikristallinen Strukturen auf einer Größenskala zwischen 0,1 und 1 Nanometer und sind daher für den praktischen Einsatz in der Photonik erst recht zu winzig. Um quasikristalline Strukturen für die Photonik herzustellen, bedurfte es daher bisher sehr aufwändiger elektronen-lithographischer Verfahren. Dass Quasikristalle überhaupt existieren, wurde erstmals 1984 von einem Forschungsteam um den US-amerikanischen Physiker Dan Shechtman nachgewiesen. Danach galten Quasikristalle lange Zeit als eine Laborkuriosität, bis die Photonik auf deren ungewöhnliche Struktureigenschaften aufmerksam wurde.

Zu der internationalen Forschergruppe, die mit ihrer Entdeckung kolloidaler Quasikristalle jetzt an die Öffentlichkeit tritt, gehören zusammen mit Stephan Förster und seiner Forschergruppe an der Universität Bayreuth auch Prof. Walter Steurer und Dr. Sofia Deloudi (ETH Zürich), Dr. Peter Lindner (ILL Grenoble) und Dr. Jan Perlich (DESY Hamburg).

Veröffentlichung:

Steffen Fischer, Alexander Exner, Kathrin Zielske, Jan Perlich, Sofia Deloudi, Walter Steurer, Peter Lindner, Stephan Förster,
Colloidal quasicrystals with 12-fold and 18-fold diffraction symmetry,
in: Proceedings of the National Academy of Sciences of the United States of America (PNAS), PNAS published ahead of print January 11, 2011,

DOI-Bookmark: 10.1073/pnas.1008695108

Kontakt für weitere Informationen:

Prof. Dr. Stephan Förster
Lehrstuhl Physikalische Chemie I
Universität Bayreuth
D-95440 Bayreuth
Tel: +49 (0)921 / 55–2760
E-Mail (Sekr.): elisabeth.duengfelder@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle
07.12.2016 | Goethe-Universität Frankfurt am Main

nachricht Das Universum enthält weniger Materie als gedacht
07.12.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie