Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kolloidale Quasikristalle entdeckt

20.01.2011
Eine internationale Forschungsgruppe um Professor Stephan Förster, Universität Bayreuth, hat erstmals kolloidale Quasikristalle entdeckt.

Im Unterschied zu den bisher bekannten Quasikristallen, die sich nur unter speziellen Laborbedingungen herstellen lassen, handelt es sich um einfach strukturierte Polymere, die durch Selbstorganisation entstehen. Aufgrund ihrer Struktureigenschaften werden sie voraussichtlich bei der Entwicklung neuartiger Bauelemente in der Photonik zum Einsatz kommen können. Darüber berichten die beteiligten Wissenschaftler aus Bayreuth, Zürich, Hamburg und Grenoble in den "Proceedings of the National Academy of Sciences of the United States of America (PNAS)".


A: Beugungsbild eines kolloidalen Quasikristalls mit 12-zähliger Symmetrie; darunter das zugehörige Kachelungsmuster. – B: Beugungsbild eines kolloidalen Quasikristalls mit 18-zähliger Symmetrie; darunter wiederum das zugehörige Kachelungsmuster. - Das Kachelungsmuster stellt jeweils die lückenlose Gesamtstruktur dar.
Abbildungen: Lehrstuhl Physikalische Chemie I, Universität Bayreuth; mit Quellenangabe zur Veröffentlichung frei.

Ungewöhnliche symmetrische Strukturen,
in Beugungsexperimenten sichtbar gemacht
Quasikristalle zeichnen sich durch eine sehr ungewöhnliche Anordnung der Atome aus. In normalen Kristallen bilden die Atome geordnete periodische Strukturen; d.h. sie fügen sich zu einer lückenlosen Gesamtstruktur zusammen, in der sich ein einziges symmetrisches Muster regelmäßig wiederholt. Aus geometrischen Gründen sind dabei nur 1-, 2-, 3-, 4- und 6-zählige Symmetrien möglich. Diese Zahlenangabe besagt, wie oft sich eine Struktur in Winkeln zwischen 0 und 360 Grad so drehen lässt, dass sie mit sich selbst zur Deckung kommt. Anders verhält es sich bei Quasikristallen. Hier liegen geordnete aperiodische Strukturen vor; d.h. es gibt mindestens zwei verschiedene symmetrische Muster, die sich nicht regelmäßig wiederholen, aber trotzdem eine lückenlose Gesamtstruktur bilden. Unter dieser Voraussetzung können auch 8-, 10- oder 12-zählige Symmetrien vorkommen.

Diese strukturellen Unterschiede zwischen Kristallen und Quasikristallen lassen sich in Beugungsexperimenten mit elektromagnetischen Wellen sichtbar machen. Dabei entstehen Beugungsmuster, an denen sich ablesen lässt, wie Kristalle und Quasikristalle aufgebaut sind. Die erkennbaren symmetrischen Strukturen werden in der Forschung als Beugungssymmetrien bezeichnet.

Kolloidale Quasikristalle,
hervorgegangen aus Prozessen der Selbstorganisation
Bei den entdeckten kolloidalen Quasikristallen handelt es sich um Hydrogele, also um Polymere, die Wasser enthalten, aber selbst nicht wasserlöslich sind. Sie besitzen eine relativ einfache Struktur und kommen dadurch zustande, dass sich mehrere gleichartige "Bausteine" durch Selbstorganisation zusammenfügen. Diese "Bausteine" sind polymere Mizellen: kleine kugelförmige Gebilde mit Durchmessern zwischen 5 und 100 Nanometern, die ohne labortechnischen Aufwand in größerem Maßstab herstellbar sind. Deshalb sind kolloidale Quasikristalle für viele Wissenschaftler und auch für die Industrie leicht zugänglich.

Schon seit längerer Zeit untersucht die Arbeitsgruppe von Prof. Stephan Förster an der Universität Bayreuth polymere Mizellen, die sich zu Gitterstrukturen zusammenlagern können – und zwar auf Längenskalen von bis zu 100 Nanometern. Bei gemeinsamen Forschungsarbeiten am Institut Laue-Langevin in Grenoble und am DESY in Hamburg wurde nun kürzlich entdeckt, dass aus derartigen Prozessen der Selbstorganisation quasikristalline Gitterstrukturen hervorgehen können. In Beugungsexperimenten wurde nicht nur eine 12-zählige Symmetrie, sondern erstmals überhaupt eine 18-zählige Symmetrie beobachtet.

Perspektiven für innovative Anwendungen in der Photonik

Derartige Experimente sind keineswegs praxisferne "Glasperlenspiele" der Grundlagenforschung. Denn für hochzählige Beugungssymmetrien in kolloidalen Quasikristallen interessiert sich die Photonik, eine Disziplin der Physik, die auf die Entwicklung optischer Technologien für die Übertragung und Speicherung von Informationen abzielt. Es hat sich in den letzten Jahren herausgestellt, dass Strukturen mit hohen Beugungssymmetrien die Eigenschaft haben, Lichtstrahlen nur in bestimmte Richtungen durchzulassen. Sie sind ein besonders gut geeignetes Medium, wenn es darum geht, Lichtstrahlen von einer bestimmten Wellenlänge in vorab definierte Richtungen weiterzuleiten. Infolgedessen sind Strukturen mit hohen Beugungssymmetrien hochinteressant für die Herstellung photonischer Bauelemente.

Eignen sich also die jetzt entdeckten Hydrogele mit ihren hohen Beugungssymmetrien als "Baumaterialien" für die Photonik? Dafür muss noch eine Hürde überwunden werden: Die Photonik benötigt Strukturmerkmale von mehreren hundert Nanometern, während kolloidale Quasikristalle nicht über 100 Nanometer hinausreichen. Die Wissenschaftler in Bayreuth, Hamburg und Grenoble arbeiten daher derzeit intensiv daran, dass sich polymere Mizellen zu quasikristallinen Großstrukturen zusammenschließen, die in photonischen Bauelementen zum Einsatz kommen können. "Ich bin zuversichtlich, dass diese Bestrebungen schon bald zum Erfolg führen werden", erklärt Prof. Stephan Förster.

Quasikristalle – nicht länger eine Laborkuriosität

Kolloidale Quasikristalle sind daher voraussichtlich weit besser für Anwendungen in der Photonik geeignet als die ca. 100 quasikristallinen Verbindungen, die bisher bekannt waren. Hierbei handelt es sich fast ausschließlich um Metall-Legierungen, die nur in kleinen Mengen und unter speziellen Laborbedingungen hergestellt werden können. Zudem bewegen sich diese quasikristallinen Strukturen auf einer Größenskala zwischen 0,1 und 1 Nanometer und sind daher für den praktischen Einsatz in der Photonik erst recht zu winzig. Um quasikristalline Strukturen für die Photonik herzustellen, bedurfte es daher bisher sehr aufwändiger elektronen-lithographischer Verfahren. Dass Quasikristalle überhaupt existieren, wurde erstmals 1984 von einem Forschungsteam um den US-amerikanischen Physiker Dan Shechtman nachgewiesen. Danach galten Quasikristalle lange Zeit als eine Laborkuriosität, bis die Photonik auf deren ungewöhnliche Struktureigenschaften aufmerksam wurde.

Zu der internationalen Forschergruppe, die mit ihrer Entdeckung kolloidaler Quasikristalle jetzt an die Öffentlichkeit tritt, gehören zusammen mit Stephan Förster und seiner Forschergruppe an der Universität Bayreuth auch Prof. Walter Steurer und Dr. Sofia Deloudi (ETH Zürich), Dr. Peter Lindner (ILL Grenoble) und Dr. Jan Perlich (DESY Hamburg).

Veröffentlichung:

Steffen Fischer, Alexander Exner, Kathrin Zielske, Jan Perlich, Sofia Deloudi, Walter Steurer, Peter Lindner, Stephan Förster,
Colloidal quasicrystals with 12-fold and 18-fold diffraction symmetry,
in: Proceedings of the National Academy of Sciences of the United States of America (PNAS), PNAS published ahead of print January 11, 2011,

DOI-Bookmark: 10.1073/pnas.1008695108

Kontakt für weitere Informationen:

Prof. Dr. Stephan Förster
Lehrstuhl Physikalische Chemie I
Universität Bayreuth
D-95440 Bayreuth
Tel: +49 (0)921 / 55–2760
E-Mail (Sekr.): elisabeth.duengfelder@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Internationales Forscherteam entdeckt kohärenten Lichtverstärkungsprozess in Laser-angeregtem Glas
25.09.2017 | Universität Kassel

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops