Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kollektives Verhalten von Fermionen. Teilchen schwingen im gleichen Takt

10.01.2014
Science-Veröffentlichung

Ob Vogelschwärme, Sanddünen oder Straßenverkehr: Im Alltag beobachten wir immer wieder sogenanntes kollektives Verhalten, bei dem sich alle beteiligten Objekte – gewollt oder ungewollt – synchron bewegen.

Ein Forschungsteam des „Hamburg Centre for Ultrafast Imaging (CUI)“ der Universität Hamburg hat nun ein neuartiges Quantensystem realisiert, das aus mehr als einer Million Atome bestand, die sich entgegen aller Erwartungen ebenfalls vollständig kollektiv verhielten. Das berichten die Wissenschaftler in der Ausgabe des Magazins „Science“ vom 10. Januar 2014.

Die CUI-Forscher aus dem Team von Prof. Dr. Klaus Sengstock konnten im Labor erstmals beobachten, wie eine Wolke ultrakalter Kalium-Atome kollektiv schwingt, quasi einen quantenmechanischen Wiener Walzer tanzt. Das Besondere dabei: Es handelt sich um fermionische Teilchen, die in der Physik eigentlich dafür bekannt sind, nicht gemeinsam zu agieren. Fermionen sind eine von zwei grundlegenden Teilchenarten und unterscheiden sich von der anderen Art, den Bosonen, nur durch eine einzige quantenmechanische Eigenschaft: ihren Spin.

„Dafür gibt es kein klassisches Analogon“, erklärt Dr. Christoph Becker, wissenschaftlicher Leiter des Projektes. „Am besten kann man sich den Spin als eine Drehung der Teilchen um sich selbst vorstellen.“ Dieser hat drastische Konsequenzen für das „Sozialverhalten“ von Teilchen. Während Bosonen einen ganzzahligen Spin haben und dazu tendieren, sich alle gleich zu verhalten, sind die Fermionen mit ihrem halbzahligem Spin Einzelgänger, die sich sozusagen soweit wie möglich aus dem Weg gehen.

Fermionen wie z. B. Neutronen, Protonen oder Elektronen sind es auch, aus denen sich Materie zusammensetzt, wodurch kollektives Verhalten in realen Quantensystemen nur selten zu finden ist. Wenn doch, dann führt dies oft zu unerwarteten und völlig neuen Effekten, welche auch technisch von großem Nutzen sein können. Ein bekanntes Beispiel dafür ist die Supraleitung, bei der bestimmte Stoffe auf extrem tiefe Temperaturen gekühlt werden, sodass sich Elektronen in Paaren ohne Widerstand durch den Leiter bewegen können.

Den Forschern der Universität Hamburg gelang es nun, Atome des Isotops 40Kalium mit Laserlicht fast bis auf den absoluten Nullpunkt (minus 273° C) abzukühlen und sie dadurch zu verlangsamen. Bei diesen Temperaturen bilden die Teilchen einen Quantenzustand, der im Fachjargon als „Fermisee“ bezeichnet wird – nach Enrico Fermi, einem Pionier der Quantenmechanik. Erst seit einigen Jahren ist es technisch überhaupt möglich, in diesen Temperaturbereich vorzustoßen.

„Wir hatten bereits beobachtet, dass sich bosonische Atome kollektiv verhalten“, berichtet Klaus Sengstock, experimenteller Leiter des Teams. „Es war aber eine völlig offene Frage, was in diesem Fall mit Fermionen passieren würde.“ Nach dem Abkühlen manipulierten die Forscher die Fermionen durch Laserlicht und richteten dadurch den Spin aus. Erstmals wurde beobachtet, wie der Spin aller Fermionen im Gleichtakt zu schwingen beginnt – ähnlich einem Wiener Walzer, bei dem sich alle Paare auf der Tanzfläche genau mit der gleichen Geschwindigkeit drehen.

Gemeinsam mit Kollegen aus Dresden und Barcelona konnte das Phänomen experimentell und theoretisch genau ergründet werden. „Alle Atome sind miteinander verknüpft, deswegen das überraschend kollektive Verhalten“, erklärt Prof. Maciej Lewenstein aus Barcelona, der das Theorieteam leitet. „Für solch komplexe Systeme gibt es keine einfache Formel. Wir mussten eine neue effektive Theorie ausarbeiten, um das Experiment korrekt beschreiben zu können.“ Die Forscher fanden zudem heraus, dass das kollektive Verhalten ein Quantenphänomen ist, das sehr sensitiv auf Störungen wie etwa Temperaturveränderungen reagiert.

Die Ergebnisse der Grundlagenforschung erweitern das Verständnis von physikalischen Vielteilchensystemen und damit von fundamentalen Aspekten der Natur. Anwendungen könnten im Bereich der Quantentechnologien liegen, etwa in Form von Quantensensoren oder in der Quanteninformationstechnologie.

Science 10 January 2014: Krauser et al., vol. 343 no. 6167 pp. 157-160
'Giant spin oscillations in an ultracold Fermi sea': https://www.sciencemag.org/content/343/6167/157.full
Für Rückfragen:
Prof. Dr. Klaus Sengstock
Universität Hamburg
Institut für Laserphysik
Tel.: 040/8998-5201
E-Mail: sengstock@physik.uni-hamburg.de
Dr. Christoph Becker
Universität Hamburg
Institut für Laserphysik
Tel.: 040/8998-5203
E-Mail: cbecker@physnet.uni-hamburg.de

Birgit Kruse | idw
Weitere Informationen:
http://www.uni-hamburg.de/presse/pressemitteilungen/2014/pm1.html

Weitere Berichte zu: Atom Bosonen Elektron Fermionen Laserlicht Quantensystem Teilchen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Gravitationswellen als Sensor für Dunkle Materie
06.12.2016 | Max-Planck-Institut für Kernphysik

nachricht Neue Perspektiven durch gespiegelte Systeme
05.12.2016 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weiterbildung zu statistischen Methoden in der Versuchsplanung und -auswertung

06.12.2016 | Seminare Workshops

Bund fördert Entwicklung sicherer Schnellladetechnik für Hochleistungsbatterien mit 2,5 Millionen

06.12.2016 | Förderungen Preise

Innovationen für eine nachhaltige Forstwirtschaft

06.12.2016 | Agrar- Forstwissenschaften