Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kohlenstoff-Nanoröhrchen koppeln Licht und Materie

15.11.2016

Forscher aus Heidelberg und St Andrews arbeiten an den Grundlagen neuer Lichtquellen aus organischen Halbleitern

Mit ihren Forschungen zu Nanomaterialien für die Optoelektronik ist es Wissenschaftlern der Universität Heidelberg und der University of St Andrews (Schottland) gelungen, erstmals eine starke Wechselwirkung von Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen nachzuweisen.


Die Entstehung von Exziton-Polaritonen durch eine starke Licht-Materie-Kopplung ist eine vielversprechende Strategie zur Herstellung von elektrisch gepumpten Lasern auf Kohlenstoffbasis. Forscher der Universität Heidelberg und der University of St Andrews (Schottland) haben nun erstmals diese starke Licht-Materie-Kopplung in halbleitenden Kohlenstoff-Nanoröhrchen nachgewiesen.

Abbildung: Arko Graf (Universität Heidelberg)

Diese starke Licht-Materie-Kopplung bildet eine wichtige Grundlage für die Realisierung neuer Lichtquellen, sogenannter elektrisch gepumpter Laser, die auf der Basis von organischen Halbleitern hergestellt werden sollen und unter anderem für Anwendungen in der Telekommunikation von Bedeutung wären. Die Forschungsergebnisse aus der Zusammenarbeit von Prof. Dr. Jana Zaumseil (Heidelberg) und Prof. Dr. Malte Gather (St Andrews) wurden in „Nature Communications“ veröffentlicht.

Organische Halbleiter auf der Basis von Kohlenstoff sind eine kosten- und energieeffiziente Alternative zu konventionellen anorganischen Halbleitern wie Silizium. So werden Leuchtdioden, die aus diesen Materialien bestehen, bereits flächendeckend in Displays von Smartphones eingesetzt.

Weitere Bauelemente für Anwendungen in der Beleuchtungstechnik, der Datenübertragung und der Photovoltaik befinden sich im Prototyp-Status. Ein wichtiges Bauteil der Optoelektronik konnte bislang jedoch nicht mit organischen Materialien realisiert werden – der elektrisch gepumpte Laser. Dies hat seinen Grund vor allem darin, dass organische Halbleiter nur eingeschränkt in der Lage sind, Ladungen – das heißt Strom – zu transportieren.

Wie Prof. Zaumseil erläutert, ist in den vergangenen Jahren die laserartige Lichtemission von organischen Halbleitern auf der Grundlage der Licht-Materie-Kopplung zunehmend in den Mittelpunkt der Forschung gerückt. Werden Photonen (Licht) und Exzitonen (Materie) mit ausreichend großer Wechselwirkung zusammengebracht, koppeln diese so stark, dass sogenannte Exziton-Polaritonen entstehen. Es handelt sich hier um Quasiteilchen, die auch Licht abgeben.

Unter bestimmten Bedingungen kann diese Emission die Eigenschaften von Laserlicht annehmen. Bei ausreichend gutem Ladungstransport würden Exziton-Polaritonen die Herstellung eines elektrisch gepumpten Kohlenstoff-basierten Lasers in greifbare Nähe rücken lassen, so Jana Zaumseil, die am Physikalisch-Chemischen Institut der Universität Heidelberg die Forschungsgruppe „Nanomaterials for Optoelectronics“ leitet.

Im Rahmen der Zusammenarbeit von Prof. Zaumseil und Prof. Gather konnte nun erstmals die Bildung von Exziton-Polaritonen in halbleitenden Kohlenstoff-Nanoröhrchen nachgewiesen werden. Anders als andere organische Halbleiter transportieren diese mikroskopisch kleinen, röhrenförmigen Gebilde aus Kohlenstoff positive und negative Ladungen ausgesprochen gut.

Sie zeigen außerdem außergewöhnliche optische Eigenschaften, wie Doktorand Arko Graf, der Erstautor der Studie ist, erläutert. Die Wissenschaftler in Heidelberg und St Andrews sehen in ihren Forschungsergebnissen einen wichtigen Schritt zur Realisierung elektrisch gepumpter Laser auf der Basis von organischen Halbleitern.

„Neben der potentiellen Erzeugung von Laserlicht können wir bereits jetzt mit Hilfe der Exziton-Polaritonen das von den Kohlenstoff-Nanoröhrchen ausgestrahlte Licht im nahen Infrarot über große Wellenlängenbereiche verschieben“, betont Prof. Zaumseil.

Originalpublikation:
A. Graf, L. Tropf, Y. Zakharko, J. Zaumseil and M. C. Gather: Near-infrared exciton-polaritons in strongly coupled single-walled carbon nanotube microcavities. Nature Communications 7, 13078 (published online 10 October 2016), doi: 10.1038/ncomms13078


Kontakt:
Prof. Dr. Jana Zaumseil
Physikalisch-Chemisches Institut
Telefon (06221) 54-5065
zaumseil@uni-heidelberg.de

Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

http://www.pci.uni-heidelberg.de/apc/zaumseil/index.html
https://gatherlab.wp.st-andrews.ac.uk

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Bilder magnetischer Strukturen auf der Nano-Skala
20.04.2018 | Georg-August-Universität Göttingen

nachricht Licht macht Ionen Beine
20.04.2018 | Max-Planck-Institut für Festkörperforschung, Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics