Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kohärenter Elektron-Loch-Spin in Halbleiter

03.07.2009
Richard Warburton, neu berufener Professor für Experimentelle Physik der Kondensierten Materie an der Universität Basel, ist es gelungen, einen Elektron-Loch-Spin während einer Mikrosekunde in einem kohärenten Quantenzustand zu halten.
Seine Arbeit beruht auf den theoretischen Untersuchungen des Basler Physikprofessors Daniel Loss, mit dem er künftig zusammenarbeiten wird.

In Bezug auf kohärente Quantenzuständen lagen Halbleiter immer weit abgeschlagen hinter Atomen.

Dies ist bedauerlich, da Halbleiter weitaus besser für die Herstellung von Bauteile geeignet sind. Die Verbindung zwischen "Quantenkohärenz" auf der einen und "anwendbare Bauteile" auf der anderen Seite ist alles andere als naheliegend, doch haben einige bemerkenswerte Entwicklungen in der theoretischen Physik der vergangenen zehn Jahre, zumindest auf dem Papier gezeigt, dass das wundersame quantenmechanische Verhalten der Materie für Informationsverarbeitung benutzt werden kann.

Forscher auf der ganzen Welt wurden durch diese Fortschritte inspiriert und versuchten, einen kohärenten Quantenzustand in Halbleitern zu finden. Dies war jedoch nicht einfach: Die Lösung eines Problems verursachte häufig ein neues. Ein Artikel im Fachmagazin "Science" von Daniel Brunner et al., der aufgrund von Forschungen unter der Leitung des kürzlich nach Basel berufenen Physikers Professor Richard Warburton an der Heriot-Watt University in Edinburgh entstand, berichtet von einem Quantensprung in diesem Feld.

Der Grundgedanke dabei ist, einen Spin zu verwenden, eine befremdliche quantenmechanische Eigenschaft von Elektronen, die man sich grob als die Drehung eines Elektrons um die eigene Achse vorstellen kann. Das gute daran ist, dass ein Spin das Wackeln der ihn umgebenden Atome nur indirekt spürt. Schlecht ist jedoch, dass er das Wackeln der Atom-Spins spürt. Inspiriert von den bahnbrechenden theoretischen Untersuchungen von Professor Daniel Loss und seiner Gruppe an der Universität Basel, hat sich die schottische Forschergruppe vorgenommen, anstelle eines Elektrons ein Loch auszuprobieren.

Ein Loch ist ein fehlendes Elektron, vergleichbar mit einer Blase in einer mit Wasser gefüllten Flasche. Gemäss dieser Einschätzung kümmert sich ein lokalisierter Loch-Spin nur um sich selbst und bleibt unberührt von all den störenden Effekten, die wackelnde Atome im Halbleiter verursachen. Die experimentellen Ergebnisse bestätigen diese tiefgreifende Idee, der Loch-Spin behält seine Kohärenz für mindestens eine Mikrosekunde. Dies mag sich nicht nach lange anhören, ist jedoch viel länger als ein Loch-Spin braucht, um um seine eigene Achse zu rotieren.

Professor Richard Warburton: "Die Theorie aus Basel hat uns so stark beeindruckt, dass wir uns entschlossen, all unsere Bemühungen dem Loch-Spin-Projekt zu widmen. Zum Glück sind die Forscher in meiner Gruppe zu jung, um viel von den Problemen zu kennen, die wir noch vor wenigen Jahren mit Löchern in traditionellen Halbleitern hatten. Mit Quantenpunkten ist nun alles anders. Die Ergebnisse überraschten uns freilich sehr. Das Experiment hat wesentlich besser funktioniert, als wir je gehofft haben."

Eine interessante Wendung ist, dass Professor Richard Warburton von der Universität Basel als neuer Ordinarius für Experimentelle Physik der Kondensierten Materie und als Nachfolger von Prof. Güntherodt angestellt wurde. Dazu Warburton: "Uns stehen interessante Zeiten bevor, da besteht kein Zweifel. Ich freue mich, die neuen Labors aufzubauen. Die Theoretiker sind gerade einmal einen Stock über uns im gleichen Gebäude, das kann ja nur gut werden."

Originalbeitrag
Daniel Brunner, Brian D. Gerardot, Paul A. Dalgarno, Gunter Wüst, Khaled Karrai, Nick G. Stoltz, Pierre M. Petroff, Richard J. Warburton
A Coherent Single-Hole Spin in a Semiconductor
Science 3 July 2009 | doi: 10.1126/science.1173684
Weitere Auskünfte
Prof. Richard J. Warburton, Departement Physik, Universität Basel, E-Mail: R.J.Warburton@hw.ac.uk

Prof. Daniel Loss, Departement Physik, Universität Basel, E-Mail: daniel.loss@unibas.ch

Hans Syfrig | idw
Weitere Informationen:
http://www.unibas.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lange Speicherung photonischer Quantenbits für globale Teleportation
13.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Einmal durchleuchtet – dreifacher Informationsgewinn
11.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rest-Spannung trotz Megabeben

13.12.2017 | Geowissenschaften

Computermodell weist den Weg zu effektiven Kombinationstherapien bei Darmkrebs

13.12.2017 | Medizin Gesundheit

Winzige Weltenbummler: In Arktis und Antarktis leben die gleichen Bakterien

13.12.2017 | Geowissenschaften