Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Knapp 5 Millionen Euro für Hochpräzisions-Experimente mit ultrakalten Neutronen

06.05.2013
Die Deutsche Forschungsgemeinschaft (DFG) fördert erneut den Aufbau der Hochpräzisions-Experimente mit ultrakalten Neutronen an der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) in Garching.
Für die Messung des elektrischen Dipolmoments des Neutrons erhalten die Forschungsgruppe von Prof. Dr. Peter Fierlinger am Exzellenzcluster Universe der TU München und die Physikalisch-Technische Bundesanstalt Berlin gemeinsam 3,45 Millionen Euro. Weitere 1,25 Millionen Euro stellt die DFG für die Messung der Lebensdauer des Neutrons durch die Forschungsgruppe von Prof. Dr. Stephan Paul von der TU München bereit, der auch Leiter des Schwerpunktprogramms „Präzisionsexperimente zur Teilchen- und Astrophysik mit kalten und ultrakalten Neutronen“ ist, in dessen Rahmen die Vorhaben finanziert werden.

Für beide Hochpräzisions-Experimente werden extrem langsame, so genannte ultrakalte Neutronen (UCN) benötigt. Die derzeit an der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) sich in der Errichtung befindliche UCN-Quelle wird eine um bis zu tausendmal höhere Dichte dieser Teilchen am Experiment ermöglichen und damit die stärkste Quelle ultrakalter Neutronen der Welt sein.

Ein kleines aber messbares elektrische Dipolmoment des Neutrons würde unter anderem eine Erklärung dafür liefern, warum nach dem Urknall so viel mehr Materie als Antimaterie hervorgegangen ist - warum also das uns bekannte Universum überhaupt entstehen konnte. Um eine hundertmal genauere Messung als bisher möglich zu realisieren, wird dazu im Rahmen einer internationalen Kollaboration aus Experten unterschiedlicher Disziplinen am FRM II ein weltweit einzigartiges Experiment aufgebaut. Hier soll, analog zum Large Hadron Collider (LHC) am CERN, die Physik jenseits des Standardmodells der Teilchenphysik getestet werden, jedoch mit komplementären Ansätzen.

Die Forschungsgruppe von Prof. Dr. Stephan Paul wird mit Hilfe ultrakalter Neutronen die Lebensdauer des Neutrons mit bisher nicht erreichter Genauigkeit neu bestimmen. Freie Neutronen zerfallen nach knapp 15 Minuten, allerdings ist dieser Wert bisher vergleichsweise ungenau bekannt. Eine präzise Kenntnis der Lebensdauer des Neutrons ist für Teilchenphysiker im Zusammenhang mit dem Standardmodell von großer Bedeutung und spielt auch beim Verständnis der Elemententstehung im frühen Universum eine große Rolle.

„Hochpräzisions-Experimente mit ultrakalten Neutronen bilden einen wichtigen Forschungszweig, der die Beschleunigerexperimente ergänzt“, sagt Prof. Dr. Stephan Paul. „Diese Unterstützung durch die DFG ist ein Zeichen der hervorragenden Forschungsförderung in Deutschland.“ Die Fördermittel werden zur Entwicklung neuartiger Messapparaturen sowie zur Unterstützung junger Wissenschaftler verwendet.

Petra Riedel | idw
Weitere Informationen:
http://www.universe-cluster.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Von photonischen Nanoantennen zu besseren Spielekonsolen
20.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Tauchgang in einen Magneten
20.07.2017 | Paul Scherrer Institut (PSI)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: Das Proton präzise gewogen

Wie schwer ist ein Proton? Auf dem Weg zur möglichst exakten Kenntnis dieser fundamentalen Konstanten ist jetzt Wissenschaftlern aus Deutschland und Japan ein wichtiger Schritt gelungen. Mit Präzisionsmessungen an einem einzelnen Proton konnten sie nicht nur die Genauigkeit um einen Faktor drei verbessern, sondern auch den bisherigen Wert korrigieren.

Die Masse eines einzelnen Protons noch genauer zu bestimmen – das machen die Physiker um Klaus Blaum und Sven Sturm vom Max-Planck-Institut für Kernphysik in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

Technologietag der Fraunhofer-Allianz Big Data: Know-how für die Industrie 4.0

18.07.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - September 2017

17.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

1,4 Millionen Euro für Forschungsprojekte im Industrie 4.0-Kontext

20.07.2017 | Förderungen Preise

Von photonischen Nanoantennen zu besseren Spielekonsolen

20.07.2017 | Physik Astronomie

Bildgebung von entstehendem Narbengewebe

20.07.2017 | Biowissenschaften Chemie