Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein kleiner Happen für unsere Milchstraße

02.02.2011
Potsdamer Astrophysikerin findet neue Überreste einer Nachbargalaxie in unserer Heimatgalaxis.

Ein internationales Team von Astronomen um Mary Williams vom Astrophysikalischen Institut Potsdam hat einen bis dato unbekannten Sternstrom in unserer Milchstraße entdeckt: den „Aquarius-Strom“, benannt nach dem Sternbild des Wassermanns (lat.: Aquarius).


Visualisierung des Aquarius-Stromes und seiner Lage in der Milchstraße. Bild: Arman Khalatyan, AIP

Bei dem Sternstrom handelt es sich um die Überreste einer kleineren Galaxie in unserer Nachbarschaft, die vor 700 Millionen Jahren von der Schwerkraft der Milchstraße auseinander gerissen wurde. Der Fund ist Ergebnis der Vermessung der Geschwindigkeiten von 250.000 Sternen mit dem am Australian Astronomical Observatory stationierten RAVE Survey.

„I have a stream“: mit diesen Worten stellte die 33-jährige, neuseeländische Wissenschaftlerin ihre Entdeckung begeistert dem Fachpublikum einer internationalen Konferenz vor. Denn der Aquarius-Strom war durchaus nicht leicht zu finden. Im Gegensatz zu fast allen bekannten Strömen befindet er sich innerhalb der galaktischen Scheibe. Dort versperrt die hohe Konzentration der Sterne der Milchstraße den Blick. Der Strom als lokalisierte, geometrische Form ist im Gesamtbild zunächst gar nicht zu erkennen. „Der Strom liegt direkt vor unserer Haustür, und doch konnten wir ihn nicht sehen“, so Williams.

Mit RAVE hat die Astronomin nun erstmals die Radialgeschwindigkeiten von 12.000 Sternen in der Region vermessen. So fand sie heraus, dass sich 15 Sterne in ihrem Geschwindigkeitsmuster von den anderen unterscheiden und mit Relativgeschwindigkeiten von bis zu 15.000 km/h durch die rotierende Scheibe der Milchstraße hindurch schießen. Der Vergleich der Sternparameter mit Simulationen zeigte, dass die Sterne als Teil eines größeren Sternstroms ursprünglich von einer Nachbargalaxie stammen. Diese traf, von der Schwerkraft der Milchstraße angezogen, vor etwa 700 Millionen Jahren auf die Milchstraße, wurde auseinandergerissen und formte aufgrund der Dynamik schließlich einen Sternstrom. Damit ist der Aquarius-Strom ein besonderer und vergleichsweise sehr junger Strom. Andere bekannte Ströme sind Milliarden von Jahre alt und in den Außenbereichen der Milchstraße lokalisiert.

Die besondere Methode, die mit Hilfe des RAVE Surveys zur Entdeckung des Sternstromes führte, lässt die Astronomen auf viele weitere Entdeckungen dieser Art hoffen. Bis 2012 soll RAVE die Charakteristika von bis zu einer Million Sterne unserer Milchstraße vermessen haben. Williams ist bereits seit dem Projektstart Teammitglied; am AIP leitet sie seit 2007 die Datenaufarbeitung.

„Mit RAVE wollen wir die Entstehungsgeschichte unserer Milchstraße verstehen“ erläutert Matthias Steinmetz, der Projektleiter der multinationalen RAVE-Kollaboration am Astrophysikalischen Institut Potsdam. „Wir wollen wissen, wie häufig solche Verschmelzungen mit Nachbargalaxien in der Vergangenheit vorgekommen sind und welche wir in Zukunft zu erwarten haben.“

Sicher ist: in etwa drei Milliarden Jahren steht der Milchstraße die nächste große Kollision mit der Andromeda-Galaxie bevor – wenn ihr nicht sogar eine der in den letzten Jahren entdeckten Zwerggalaxien in nächster kosmischer Nachbarschaft zuvorkommt.

RAVE ist ein multinationales Projekt, an dem sich Wissenschaftler aus Australien, Deutschland, Frankreich, Großbritannien, Italien, Kanada, den Niederlanden, Slowenien und den USA beteiligen. Die Finanzierung von RAVE, die einen umfangreichen Zugang zum Teleskop und Instrument ermöglicht, wird von den teilnehmenden Institutionen und von den jeweiligen nationalen Organisationen zur Forschungsförderung geleistet.

Das AIP beschäftigt sich vorrangig mit kosmischen Magnetfeldern und extragalaktischer Astrophysik. Daneben wirkt das Institut als Kompetenzzentrum bei der Entwicklung von Forschungstechnologie in den Bereichen Spektroskopie, robotische Teleskope und E-Science. Das AIP ist Nachfolger der 1700 gegründeten Berliner Sternwarte und des 1874 gegründeten Astrophysikalischen Observatoriums Potsdam, das sich als erstes Institut weltweit ausdrücklich der Astrophysik widmete. Das AIP ist eine Stiftung privaten Rechts und ein Institut der Leibniz-Gemeinschaft. Zur Leibniz-Gemeinschaft gehören derzeit 87 außeruniversitäre Forschungseinrichtungen, die wissenschaftliche Fragestellungen von gesamtgesellschaftlicher Bedeutung bearbeiten.

Weitere Informationen:
http://iopscience.iop.org/0004-637X/728/2/102 - Originalpublikation: Williams et al., Astrophysical Journal, Issue 728-2, 2011.
http://eos.aip.de/arm2arm/RAVE/presse/images/ - Animationen und Bilder
http://www.rave-survey.aip.de/rave/pages/project/Intro.jsp - Das RAVE Survey
http://www.aip.de - Das Astrophysikalische Institut Potsdam
http://www.aao.gov.au - Das Australian Astronomical Observatory (AAO)

Gabriele Schönherr | Astrophysikalisches Institut Pot
Weitere Informationen:
http://www.aip.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Raumschrott im Fokus
22.05.2018 | Universität Bern

nachricht Countdown für Kilogramm, Kelvin und Co.
18.05.2018 | Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Raumschrott im Fokus

Das Astronomische Institut der Universität Bern (AIUB) hat sein Observatorium in Zimmerwald um zwei zusätzliche Kuppelbauten erweitert sowie eine Kuppel erneuert. Damit stehen nun sechs vollautomatisierte Teleskope zur Himmelsüberwachung zur Verfügung – insbesondere zur Detektion und Katalogisierung von Raumschrott. Unter dem Namen «Swiss Optical Ground Station and Geodynamics Observatory» erhält die Forschungsstation damit eine noch grössere internationale Bedeutung.

Am Nachmittag des 10. Februars 2009 stiess über Sibirien in einer Höhe von rund 800 Kilometern der aktive Telefoniesatellit Iridium 33 mit dem ausgedienten...

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Junger Embryo verspeist gefährliche Zelle

22.05.2018 | Biowissenschaften Chemie

Raumschrott im Fokus

22.05.2018 | Physik Astronomie

48V im Fokus!

21.05.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics