Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein kleiner Happen für unsere Milchstraße

02.02.2011
Potsdamer Astrophysikerin findet neue Überreste einer Nachbargalaxie in unserer Heimatgalaxis.

Ein internationales Team von Astronomen um Mary Williams vom Astrophysikalischen Institut Potsdam hat einen bis dato unbekannten Sternstrom in unserer Milchstraße entdeckt: den „Aquarius-Strom“, benannt nach dem Sternbild des Wassermanns (lat.: Aquarius).


Visualisierung des Aquarius-Stromes und seiner Lage in der Milchstraße. Bild: Arman Khalatyan, AIP

Bei dem Sternstrom handelt es sich um die Überreste einer kleineren Galaxie in unserer Nachbarschaft, die vor 700 Millionen Jahren von der Schwerkraft der Milchstraße auseinander gerissen wurde. Der Fund ist Ergebnis der Vermessung der Geschwindigkeiten von 250.000 Sternen mit dem am Australian Astronomical Observatory stationierten RAVE Survey.

„I have a stream“: mit diesen Worten stellte die 33-jährige, neuseeländische Wissenschaftlerin ihre Entdeckung begeistert dem Fachpublikum einer internationalen Konferenz vor. Denn der Aquarius-Strom war durchaus nicht leicht zu finden. Im Gegensatz zu fast allen bekannten Strömen befindet er sich innerhalb der galaktischen Scheibe. Dort versperrt die hohe Konzentration der Sterne der Milchstraße den Blick. Der Strom als lokalisierte, geometrische Form ist im Gesamtbild zunächst gar nicht zu erkennen. „Der Strom liegt direkt vor unserer Haustür, und doch konnten wir ihn nicht sehen“, so Williams.

Mit RAVE hat die Astronomin nun erstmals die Radialgeschwindigkeiten von 12.000 Sternen in der Region vermessen. So fand sie heraus, dass sich 15 Sterne in ihrem Geschwindigkeitsmuster von den anderen unterscheiden und mit Relativgeschwindigkeiten von bis zu 15.000 km/h durch die rotierende Scheibe der Milchstraße hindurch schießen. Der Vergleich der Sternparameter mit Simulationen zeigte, dass die Sterne als Teil eines größeren Sternstroms ursprünglich von einer Nachbargalaxie stammen. Diese traf, von der Schwerkraft der Milchstraße angezogen, vor etwa 700 Millionen Jahren auf die Milchstraße, wurde auseinandergerissen und formte aufgrund der Dynamik schließlich einen Sternstrom. Damit ist der Aquarius-Strom ein besonderer und vergleichsweise sehr junger Strom. Andere bekannte Ströme sind Milliarden von Jahre alt und in den Außenbereichen der Milchstraße lokalisiert.

Die besondere Methode, die mit Hilfe des RAVE Surveys zur Entdeckung des Sternstromes führte, lässt die Astronomen auf viele weitere Entdeckungen dieser Art hoffen. Bis 2012 soll RAVE die Charakteristika von bis zu einer Million Sterne unserer Milchstraße vermessen haben. Williams ist bereits seit dem Projektstart Teammitglied; am AIP leitet sie seit 2007 die Datenaufarbeitung.

„Mit RAVE wollen wir die Entstehungsgeschichte unserer Milchstraße verstehen“ erläutert Matthias Steinmetz, der Projektleiter der multinationalen RAVE-Kollaboration am Astrophysikalischen Institut Potsdam. „Wir wollen wissen, wie häufig solche Verschmelzungen mit Nachbargalaxien in der Vergangenheit vorgekommen sind und welche wir in Zukunft zu erwarten haben.“

Sicher ist: in etwa drei Milliarden Jahren steht der Milchstraße die nächste große Kollision mit der Andromeda-Galaxie bevor – wenn ihr nicht sogar eine der in den letzten Jahren entdeckten Zwerggalaxien in nächster kosmischer Nachbarschaft zuvorkommt.

RAVE ist ein multinationales Projekt, an dem sich Wissenschaftler aus Australien, Deutschland, Frankreich, Großbritannien, Italien, Kanada, den Niederlanden, Slowenien und den USA beteiligen. Die Finanzierung von RAVE, die einen umfangreichen Zugang zum Teleskop und Instrument ermöglicht, wird von den teilnehmenden Institutionen und von den jeweiligen nationalen Organisationen zur Forschungsförderung geleistet.

Das AIP beschäftigt sich vorrangig mit kosmischen Magnetfeldern und extragalaktischer Astrophysik. Daneben wirkt das Institut als Kompetenzzentrum bei der Entwicklung von Forschungstechnologie in den Bereichen Spektroskopie, robotische Teleskope und E-Science. Das AIP ist Nachfolger der 1700 gegründeten Berliner Sternwarte und des 1874 gegründeten Astrophysikalischen Observatoriums Potsdam, das sich als erstes Institut weltweit ausdrücklich der Astrophysik widmete. Das AIP ist eine Stiftung privaten Rechts und ein Institut der Leibniz-Gemeinschaft. Zur Leibniz-Gemeinschaft gehören derzeit 87 außeruniversitäre Forschungseinrichtungen, die wissenschaftliche Fragestellungen von gesamtgesellschaftlicher Bedeutung bearbeiten.

Weitere Informationen:
http://iopscience.iop.org/0004-637X/728/2/102 - Originalpublikation: Williams et al., Astrophysical Journal, Issue 728-2, 2011.
http://eos.aip.de/arm2arm/RAVE/presse/images/ - Animationen und Bilder
http://www.rave-survey.aip.de/rave/pages/project/Intro.jsp - Das RAVE Survey
http://www.aip.de - Das Astrophysikalische Institut Potsdam
http://www.aao.gov.au - Das Australian Astronomical Observatory (AAO)

Gabriele Schönherr | Astrophysikalisches Institut Pot
Weitere Informationen:
http://www.aip.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht CAST-Projekt setzt Dunkler Materie neue Grenzen
23.05.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Heiße Materialien: Fachartikel zum pyroelektrischen Koeffizienten
23.05.2017 | Technische Universität Bergakademie Freiberg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie