Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Im Kleinen ganz groß

27.01.2014
Kieler Physikern gelingt es erstmals, ein Atom vertikal zu verschieben und dessen Funktion zu untersuchen

Bauteile für Computer werden immer kleiner und präziser. Einer der leistungsfähigsten Computer wäre der Quantenrechner, ein auf den Gesetzen der Quantenmechanik beruhendes, bisher noch weitgehend theoretisches Konzept. Hierbei spielt die Kontrolle der Zustände einzelner Atome eine große Rolle.

Wissenschaftlern der Christian-Albrechts-Universität zu Kiel (CAU) ist es nun erstmals gelungen, einzelne Atome in einem Kristall gezielt vertikal zu bewegen. Dies ist ein wichtiges Werkzeug für die Entwicklung ultrakleiner Bauelemente.

Zeitgleich entdeckten sie eine Methode, ein mit Transistoren vergleichbares Verhalten einzelner Atome zu messen. Die Forscher veröffentlichten ihre Ergebnisse kürzlich im Fachmagazin Nature Communications (3. Januar 2014) sowie in Physical Review Letters.

Bei der Herstellung ultrakleiner Bauteile sind das Verstehen, Überprüfen und Handhaben der Materialien eine große Herausforderung. Ein häufig verwendeter Stoff ist das durchsichtige Zinkoxid (ZnO). Es wird als Halbleiter bei der Herstellung blauer Leuchtdioden (LED) und Flüssigkristallbildschirmen (LCD) verwendet oder in Form von Nanodrähten in der Messtechnik eingesetzt. Dabei waren einige seiner Eigenschaften unverstanden – etwa die Leitfähigkeit des reinen Materials.

Einen großen Schritt zur Lösung dieses Rätsels haben Dr. Hao Zheng, Dr. Alexander Weismann und Professor Richard Berndt vom Institut für Experimentelle und Angewandte Physik der Christian-Albrechts-Universität zu Kiel nun gemacht. In einer Forschungsarbeit im Bereich „Magnetoelektronische Verbundwerkstoffe“ untersuchte Hao Zheng mit dem Rastertunnelmikroskop (RTM) Zinkoxid.

Das RTM kann Kristalle auf atomarer Ebene darstellen. Zheng entdeckte dabei regelmäßige, ringförmige Strukturen innerhalb der ansonsten unebenen Oberfläche. „Wir fanden heraus, dass die Ursache dafür fehlerhaft in den Kristall eingebaute Zinkatome sind“, sagt Zheng. Jedes dieser Atome wies zwei Ringe auf – ein Beleg dafür, dass das Atom zwei Elektronen an den Halbleiter abgeben kann. „Wir studierten die Fachliteratur und bemerkten, dass bisher nicht erklärt werden konnte, warum Zinkoxid leitet. Die Schlussfolgerung lag nahe, dass dies an den von uns beobachteten Zinkatomen liegen muss, die im Kristall natürlich vorkommen.“

Im Zuge weiterer Forschungen beobachtete Dr. Zheng, dass sich die Größe der Ringe im Rastertunnelmikroskopbild verändern ließ. Auf der Suche nach der Ursache dieses Phänomens, holte sich Zheng seinen Kollegen Dr. Alexander Weismann zur Seite, um Modellrechnungen durchzuführen. „Die Berechnungen ergaben, dass die Ringdurchmesser etwas über die Tiefe verraten, in der sich die Atome unter der Oberfläche befinden“, sagt Weismann.

Dr. Zheng konnte nun zeigen, dass die Position eines Atoms um einzelne Atomlagen verändert werden konnte. „Wir sind die ersten, denen es gelungen ist, Atome innerhalb eines Kristalls mit atomarer Präzision vertikal zu bewegen“, ergänzt Dr. Weismann. „Das ist ein nützliches Werkzeug, um kleinste Strukturen im Labor zu bauen.“

Den Forschern an der Kieler Universität ist aber noch mehr gelungen. Sie konnten an den Zinkatomen ein Verhalten beobachten, welches dem eines Transistors ähnelt. Dieses Bauelement kommt milliardenfach in modernen Computern vor und benötigt gewöhnlich drei Kontaktelektroden. Bei ultrakleinen Nanostrukturen wie Atomen, die 0,3 Nanometer klein sind, würden aber zwangsläufig Kurzschlüsse zwischen den Elektroden auftreten. „Wir haben mit Hilfe des Rastertunnelmikroskops eine Messmethode entdeckt, bei der nur zwei Elektroden benötigt werden, von denen eine beweglich sein muss.“ Auch dies ist ein wichtiger Schritt für das Hantieren mit Nanostrukturen.

Die Forschungsarbeit wurde vom Sonderforschungsbereich 855 „Magnetoelektrische Verbundwerkstoffe – biomagnetische Schnittstellen der Zukunft“ gefördert.

Originalpublikation:
Zheng, H. et al. Tuning the electron transport at single donors in zinc oxide with a scanning tunnelling microscope. Nat. Commun. 4:2992 doi: 10.1038/ncomms3992 (2014).

Abrufbar unter: http://www.nature.com/ncomms/2014/140103/ncomms3992/full/ncomms3992.html

Ein Foto steht zum Download bereit:
http://www.uni-kiel.de/download/pm/2014/2014-022-1.jpg
Bildunterschrift: Leisten Pionierarbeit für den Umgang mit Nanostrukturen: Alexander Weismann und Hao Zheng vor dem Rastertunnelmikroskop

Foto/Copyright: Wimber/CAU

Kontakt
Dr. Alexander Weismann
Christian-Albrechts-Universität zu Kiel
Institut für Experimentelle und Angewandte Physik
Tel.: 0431/880-3966
E-Mail: weismann@physik.uni-kiel.de
Text:
Ann-Christin Wimber
Redaktionsbüro Alte Schule
www.alte-schule.info
Christian-Albrechts-Universität zu Kiel
Presse, Kommunikation und Marketing, Dr. Boris Pawlowski,
Redaktion: Claudia Eulitz
Postanschrift: D-24098 Kiel,
Telefon: (0431) 880-2104, Telefax: (0431) 880-1355
E-Mail: presse@uv.uni-kiel.de

Dr. Boris Pawlowski | Uni Kiel
Weitere Informationen:
http://www.uni-kiel.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Spin-Strom aus Wärme: Neues Material für höhere Effizienz
20.11.2017 | Universität Bielefeld

nachricht cw-Wert wie ein Lkw: FH Aachen testet Weihnachtsbaum im Windkanal
20.11.2017 | FH Aachen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

500 Kommunikatoren zu Gast in Braunschweig

20.11.2017 | Veranstaltungen

VDI-Expertenforum „Gefährdungsanalyse Trinkwasser"

20.11.2017 | Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Künstliche neuronale Netze: 5-Achs-Fräsbearbeitung lernt, sich selbst zu optimieren

20.11.2017 | Informationstechnologie

Tonmineral bewässert Erdmantel von innen

20.11.2017 | Geowissenschaften

Hemmung von microRNA-29 schützt vor Herzfibrosen

20.11.2017 | Biowissenschaften Chemie