Kleine Ursache – große Wirkung

Jeder weiß, dass Solarzellen Licht in elektrische Energie wandeln und so eine wichtige und nachhaltige Methode zur Stromerzeugung darstellen. Dabei werden die beleuchteten Solarzellen in der sogenannten Vorwärtsrichtung betrieben.

Die Vorwärtsrichtung bezeichnet bei jeder Diode die Spannungsrichtung, unter der der Strom quasi ungehindert fließen kann.

Kehrt man die Spannung um, betreibt man die Diode in Rückwärtsrichtung, in der idealer Weise kaum Strom fließt. In der Realität ist dies leider oft anders. So fließt in rückwärts geschalteten Dioden und damit auch Solarzellen immer ein größerer Strom als dies idealerweise der Fall sein sollte.

Am Lehrstuhl Halbleiterphysik (Prof. Marius Grundmann) untersuchten die Wissenschaftler in mikrometergroßen Bereichen fließende Rückwärtsströme in Silizium Solarzellen, sogenannten „shunts“. Dominik Lausch (Fraunhofer CSP) und Dr. Holger von Wenckstern (Universität Leipzig) trugen maßgeblich zu den Untersuchungen und den daraus gewonnen Interpretationen der Forschungskooperation bei. Speziell wurde in der Arbeit ein Shunttyp untersucht, der bereits bei kleinen Rückwärtsspannungen von nur wenigen Volt auftritt und durch die verbundene sichtbare Lichtemission auch direkt auffällt. Den Forschern gelang es, den Mechanismus der Bildung dieses Shunttyps sowie der Lichtemission zu klären und damit die Ursache für den stark lokalisierten Stromfluss zu ergründen. Hierfür wurden Solarzellen gezielt mit einem Ionenstrahl „aufgeschnitten“ und die Elementverteilung der erhaltenen Querschnitte auf der Mikrometerskala kartiert. Diese buchstäbliche Suche nach der Nadel im Heuhaufen zeigte, dass der Rückwärtsstrom an den Stellen besonders hoch ist, an denen sich mikrometer-„große“ Aluminiumpartikel befanden. Der Durchmesser dieser Partikel ist ca. zehnmal kleiner als der Durchmesser eines menschlichen Haares. Sie bewirken zusammen mit einer nur wenige Nanometer dicken, isolierenden Siliziumoxid-Schicht den „shunt“.

Die Wirkung dieser winzigen Teilchen im Nano- und Mikrobereich kann die Kennlinie der gesamten Solarzelle für geringe Spannungen maßgeblich beeinflussen. Die im Rahmen der Forschungskooperation erlangten Ergebnisse „tragen zu einem tiefgreifenden Verständnis von Shunts in Silziumsolarzellen bei und können helfen, die Effizienz dieser zukunftsträchtigen Technologie weiter zu erhöhen“, erklärt Prof. Grundmann.

Die Rolle und Effekte von Nano- und Mikrostrukturen in industriellen Materialien und Prozessen werden an der Universität Leipzig im Rahmen des Profilbildenden Forschungsbereich 1 „Von Molekülen und Nanoobjekten zu multifunktionalen Materialien und Prozessen“ untersucht.

Referenz:
Applied Physics Letters 97, 073506 (2010) „Identification of Pre-Breakdown Mechanism of Silicon Solar Cells at Low Reverse Voltages „
Weitere Informationen:
Prof. Dr. Marius Grundmann
Telefon: +49 341 97-32650
E-Mail: grundmann@physik.uni-leipzig.de
www.uni-leipzig.de/~hlp
Dr. Holger von Wenckstern
Telefon: +49 341 9732604
E-Mail: wenckst@physik.uni-leipzig.de
http://www.uni-leipzig.de/~wenckst/

Media Contact

Dr. Manuela Rutsatz Universität Leipzig

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer