Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Klein bestimmt über groß?

29.03.2017

Wissenschaftler erkennen, wie Flüssigkeit in schwammartige Strukturen eintritt

Vom Tafelwischen in der Schule kennt man es: Wasser benetzt einen Schwamm und wird von diesem aufgesogen. Dabei verdrängt das eindringende Wasser die in dem Schwamm befindliche Luft nahezu vollständig. Ganz anders ist die Situation bei der Bewässerung trockener Böden oder bei der Ölgewinnung, bei der Wasser in ein poröses Material eindringen muss, das oft nicht gut benetzbar ist.


Räumliche Darstellungen mikrotomographischer Aufnahmen, wie Wasser (gelb) von unten in ölgefüllte Kugelpackungen eindringt. Links: benetzender Basaltkugel, rechts: nicht benetzende Glaskugeln

(c) MPIDS/UdS


Schnitte durch mikrotomographische Aufnahmen, wie Wasser (schwarz) von unten in eine ölgefüllte Glaskugelpackung (nicht gezeigt) eindringt (links früher Zeitpunkt, rechts späterer Zeitpunkt).

(c) MPIDS/UdS

Bei der Ölförderung muss es gar meist unter hohem Druck in einen ölhaltigen, nicht benetzenden Sandstein hineingepumpt werden, um das Öl zu verdrängen und damit zu fördern. Hierbei wird das Öl nur teilweise ausgetrieben und kann deshalb nicht vollständig gefördert werden. Diesen Prozess wollten Forscher am Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen (MPIDS), an der Universität des Saarlandes (UdS) sowie der Europäischen Synchrotron Strahlungsquelle (ESRF) in Grenoble verstehen.

Dafür haben sie das Eindringen von Flüssigkeit in künstliches Gestein, bestehend aus dicht gepackten Kugeln mit unterschiedlicher Benetzbarkeit, mittels zeitaufgelöster Röntgen-Mikrotomographie untersucht und die benetzungsabhängigen Prozesse auf der Größenskala einzelner Poren entschlüsselt.

Komplexes Fließverhalten

Bei ihren Untersuchungen, die unter anderem von der Firma BP Inc. gefördert werden, entdeckten die Forscher, dass sich bei Packungen aus benetzenden Kugeln, ähnlich porös wie ein Schwamm, eine relativ glatte Front zwischen dem Wasser und dem Öl ausbildet. Im Falle von nicht benetzenden Kugeln hingegen ist die Front zwischen den Flüssigkeiten stark verzweigt.

Was für die Forscher überraschend war: Dieses komplexe Fließverhalten kann man allein durch die Betrachtung der einzelnen Poren verstehen, und an Theorie braucht man dazu nicht mehr als ein wenig Schulgeometrie. Benetzungs- und geometrieabhängig benötigt man einen Mindestdruck, damit Flüssigkeit in eine bestimmte Pore eindringen kann.

Für gut benetzende Flüssigkeiten kann dieser Druck sogar negativ sein und die Flüssigkeit wird aufgesogen wie in einem Schwamm: Wie in einer Kapillare wird jede einzelne Flüssigkeitsoberfläche so weit in eine Pore aufgesogen, dass sie in der dreidimensionalen Struktur mit den Flüssigkeitsoberflächen der Nachbarporen verschmilzt und weiter fließen kann. Diese (kooperativen) Wechselwirkungen mit den Nachbarporen sorgen dafür, dass sich glatte Fronten ausbilden und fast alle Luft aus dem Schwamm (bzw. fast alles Öl aus dem Gestein) verdrängt wird.

Verzweigte Fronten

Schlecht benetzende Flüssigkeiten müssen in die gepackten Kugeln hineingepresst werden und dringen nur in die jeweils größte Pore ein. Wenn die nachfolgenden Poren gleich groß oder größer sind, kann die Flüssigkeit durch diese Stellen weiter fließen. Sind die nachfolgenden Poren aber kleiner, so bleibt die Flüssigkeit an dieser Stelle stehen, dringt an anderer Stelle der Probe in die jeweils größte Pore ein und bildet so eine verzweigte Front.

Dabei fließt das eindringende Wasser um die Kontaktstellen der Kugeln herum, die weiterhin mit dem Öl umgeben sind. Während dieses Prozesses bildet das Öl ebenfalls eine komplexe, zusammenhängende Flüssigkeitsstruktur aus, wie man sie auch in feuchtem Sand findet. Wird weiter Wasser in die Probe eingepumpt, so zerfällt diese zusammenhängende Ölstruktur in kleinere Bereiche, die durch das eindringende Wasser nicht mehr verdrängt werden können und die Menge des zurückbleibenden Öls bestimmen.

Computertomographie macht’s möglich

Diese Beobachtungen waren möglich, weil die Wissenschaftler mit der aus der Medizin bekannten Technik der Computertomographie gearbeitet haben. Dabei werden Proben aus verschiedenen Winkeln mit Röntgenstrahlen durchleuchtet, und ein Computer ermittelt aus diesen Bildern die dreidimensionale Struktur. Wenn Wissenschaftler dabei eine brillante Röntgenquelle nutzen, wie bei dieser Studie am ESRF, können räumlichen Strukturen von wenigen Tausendstel Millimetern in Sekundenschnelle abgebildet werden. Für die bei der Ölförderung typischen Fließgeschwindigkeiten ist dies vollkommen ausreichend, um alle wesentlichen Aspekte der Dynamik zu erfassen.

„Mit unseren Ergebnissen konnten wir zeigen, dass die Benetzbarkeit der eindringenden Flüssigkeit entscheidend für die Struktur der sich bildenden Benetzungsfront ist, und dass sie im Falle von regelmäßigen Kugelschüttungen sogar eine quantitative Vorhersage der Menge des zurückbleibenden Öls erlaubt. Wenn es gelingt, diese Erkenntnisse auf natürliche Gesteine anzuwenden, kann dies helfen, aus vorhandenen Ölreservoirs mehr Öl zu gewinnen und Ressourcen zu schonen“, sagt Physiker Ralf Seemann (MPIDS und Universität des Saarlandes) als Leiter der Studie.

Weitere Informationen:

http://www.nature.com/articles/s41598-017-00191-y

Carolin Hoffrogge | Max-Planck-Institut für Dynamik und Selbstorganisation
Weitere Informationen:
http://www.ds.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern
15.09.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik