Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vom klassischen Laser zum „Quantenlaser“

29.03.2010
Innsbrucker Physiker erforschen Verhalten von Lasern aus einzelnen Atomen

Einer Forschergruppe um Rainer Blatt und Piet Schmidt an der Universität Innsbruck ist es gelungen, einen Laser mit einem einzelnen Atom zu realisieren, der sowohl die Eigenschaften eines klassischen Lasers zeigt, als auch die quantenmechanische Natur der Atom-Photon-Wechselwirkung. Ihre Ergebnisse präsentieren die Forscher nun in der Fachzeitschrift Nature Physics.

Vor 50 Jahren wurde der erste Laser entwickelt. Heute sind die künstlich gerichteten Lichtstrahlen aus unserem Alltag nicht mehr weg zu denken. Laser sind zentraler Bestandteil einer Vielzahl von Geräten mit Anwendungen in Telekommunikation, Medizin, Haushalt und Forschung. Ein Laser besteht üblicherweise aus einem Verstärkungsmedium, das elektrisch oder optisch gepumpt wird und von einem Spiegelresonator umgeben ist. Das Licht im Resonator wird in Form sogenannter Schwingungsmoden hin- und herreflektiert und dabei in seiner Intensität überhöht und durch das Medium verstärkt.

Eines der markantesten Merkmale eines klassischen Lasers ist der sprunghafte Anstieg der Ausgangsleistung beim Erreichen der sogenannten Schwellpumpleistung, bei der die Verluste bei einem Umlauf des Lichts im Resonator durch die Verstärkung im Medium gerade ausgeglichen werden. Ursache dieses Verhaltens ist ein Selbstverstärkungseffekt der Wechselwirkung des Lichts mit den Atomen: Je mehr Photonen in einer Schwingungsmode bereits vorhanden sind, desto größer ist die Verstärkung des Lichts in dieser Mode. Üblicherweise tritt dieser Effekt bei makroskopischen Lasern mit vielen Atomen und vielen Photonen auf.

Den Innsbrucker Forschern ist es nun gelungen, den Beginn dieses verstärkenden Schwellverhaltens bei dem kleinstmöglichen Grundbaustein eines Lasers nachzuweisen: einem einzelnen Atom, das mit einer einzelnen Mode in einem optischen Resonator wechselwirkt. Dazu wurde ein Calcium-Ion in einer Ionenfalle eingefangen und mit Hilfe von externen Lasern angeregt. Zwei, das Ion umgebende Spiegel formen einen optischen Resonator mit hoher Güte, der die vom Ion emittierten Photonen in einer Mode einfängt und speichert. Das Ion wird durch die externen Laser zyklisch angeregt und fügt der Resonatormode bei jedem Zyklus ein Photon hinzu, was zu einer Verstärkung des Lichts führt.

Bei starker Kopplung des Ions an die Resonatormode verhält sich das System aus Atom und Resonator quantenmechanisch: Es können immer nur einzelne Photonen in den Resonator eingebracht werden. „Damit kann es zu keiner Selbstverstärkung und auch zu keinem Schwellverhalten kommen“, erklärt François Dubin, französischer Postdoc und Erstautor der Veröffentlichung. Dieser „Quantenlaser“ wurde bereits vor einigen Jahren in einem ähnlichen System demonstriert. Clou des Innsbrucker Experiments ist die einstellbare Kopplung des Atoms an der Resonatormode. Durch geeignete Wahl der Parameter des Anregungslasers konnten die Physiker der Universität Innsbruck eine stärkere Anregung erreichen und dadurch mehr Photonen in den Resonator einbringen. Obwohl im Mittel immer noch weniger als ein Photon im Resonator vorhanden war, konnten Selbstverstärkungseffekte in Form eines Schwellverhaltens beobachtet werden. „Ein einzelnes Atom ist ein sehr schwacher Verstärker. Daher ist das Schwellverhalten nicht so stark ausgeprägt wie bei einem klassischen Laser“, erläutert Piet Schmidt die Ergebnisse.

Eine noch stärkere Anregung führt im Gegensatz zum klassischen Laser nicht zu einer höheren Ausgangsleistung, sondern aufgrund quantenmechanischer Interferenzen zum Verlöschen des Lasers. Dies stellt eine fundamentale Einschränkung für Miniaturlaser bestehend aus wenigen Atomen dar. Die Innsbrucker Forscher wollen daher nun den Übergang vom Quantenlaser zum klassischen Laser durch kontrolliertes Hinzufügen von weiteren Atomen genauer untersuchen.

Unterstützt wurden die Arbeiten vom österreichischen Wissenschaftsfonds FWF, der Europäischen Kommission und der Industriellenvereinigung Tirol.

Bilder: http://www.uibk.ac.at/public-relations/presse/archiv/2010/032801/

Publikation: F. Dubin, C. Russo, H.G. Barros, A. Stute, C. Becher, P.O. Schmidt and R. Blatt, „Quantum to classical transition in a single ion laser“, Nature Physics, published online: 28 March 2010 | doi: 10.1038/NPHYS1627. (http://dx.doi.org/10.1038/NPHYS1627)

Kontakt:
Univ.-Prof. Dr. Piet.Schmidt
QUEST Institut for Experimental Quantum Metrology
Physikalisch-Technische Bundesanstalt
Bundesallee 100, D-38116 Braunschweig
Tel.: ++49 531 592-4700
Email: Piet.Schmidt@ptb.de
Web: http://www.quantummetrology.de/
Univ.-Prof. Dr. Rainer Blatt
Institut für Experimentalphysik
Universität Innsbruck
Technikerstraße 25, A-6020 Innsbruck
Tel.: ++43 512 507-6350
Email: Rainer.Blatt@uibk.ac.at
Web: http://www.quantumoptics.at
Dr. Christian Flatz
Büro für Öffentlichkeitsarbeit
Universität Innsbruck
Innrain 52, A-6020 Innsbruck
Tel.: ++43 512 507-32022
Mobil: +43 650 5777122
Email: Christian.Flatz@uibk.ac.at
Web: http://www.uibk.ac.at/

Dr. Christian Flatz | Universität Innsbruck
Weitere Informationen:
http://www.uibk.ac.at/
http://www.quantumoptics.at
http://www.quantummetrology.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Topologische Isolatoren: Neuer Phasenübergang entdeckt
17.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Vorhersagen bestätigt: Schwere Elemente bei Neutronensternverschmelzungen nachgewiesen
17.10.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mobilität 4.0: Konferenz an der Jacobs University

18.10.2017 | Veranstaltungen

Smart MES 2017: die Fertigung der Zukunft

18.10.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

18.10.2017 | Biowissenschaften Chemie

Biokunststoffe könnten auch in Traktoren die Richtung angeben

18.10.2017 | Messenachrichten

»ILIGHTS«-Studie gestartet: Licht soll Wohlbefinden von Schichtarbeitern verbessern

18.10.2017 | Energie und Elektrotechnik