Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vom klassischen Laser zum „Quantenlaser“

29.03.2010
Innsbrucker Physiker erforschen Verhalten von Lasern aus einzelnen Atomen

Einer Forschergruppe um Rainer Blatt und Piet Schmidt an der Universität Innsbruck ist es gelungen, einen Laser mit einem einzelnen Atom zu realisieren, der sowohl die Eigenschaften eines klassischen Lasers zeigt, als auch die quantenmechanische Natur der Atom-Photon-Wechselwirkung. Ihre Ergebnisse präsentieren die Forscher nun in der Fachzeitschrift Nature Physics.

Vor 50 Jahren wurde der erste Laser entwickelt. Heute sind die künstlich gerichteten Lichtstrahlen aus unserem Alltag nicht mehr weg zu denken. Laser sind zentraler Bestandteil einer Vielzahl von Geräten mit Anwendungen in Telekommunikation, Medizin, Haushalt und Forschung. Ein Laser besteht üblicherweise aus einem Verstärkungsmedium, das elektrisch oder optisch gepumpt wird und von einem Spiegelresonator umgeben ist. Das Licht im Resonator wird in Form sogenannter Schwingungsmoden hin- und herreflektiert und dabei in seiner Intensität überhöht und durch das Medium verstärkt.

Eines der markantesten Merkmale eines klassischen Lasers ist der sprunghafte Anstieg der Ausgangsleistung beim Erreichen der sogenannten Schwellpumpleistung, bei der die Verluste bei einem Umlauf des Lichts im Resonator durch die Verstärkung im Medium gerade ausgeglichen werden. Ursache dieses Verhaltens ist ein Selbstverstärkungseffekt der Wechselwirkung des Lichts mit den Atomen: Je mehr Photonen in einer Schwingungsmode bereits vorhanden sind, desto größer ist die Verstärkung des Lichts in dieser Mode. Üblicherweise tritt dieser Effekt bei makroskopischen Lasern mit vielen Atomen und vielen Photonen auf.

Den Innsbrucker Forschern ist es nun gelungen, den Beginn dieses verstärkenden Schwellverhaltens bei dem kleinstmöglichen Grundbaustein eines Lasers nachzuweisen: einem einzelnen Atom, das mit einer einzelnen Mode in einem optischen Resonator wechselwirkt. Dazu wurde ein Calcium-Ion in einer Ionenfalle eingefangen und mit Hilfe von externen Lasern angeregt. Zwei, das Ion umgebende Spiegel formen einen optischen Resonator mit hoher Güte, der die vom Ion emittierten Photonen in einer Mode einfängt und speichert. Das Ion wird durch die externen Laser zyklisch angeregt und fügt der Resonatormode bei jedem Zyklus ein Photon hinzu, was zu einer Verstärkung des Lichts führt.

Bei starker Kopplung des Ions an die Resonatormode verhält sich das System aus Atom und Resonator quantenmechanisch: Es können immer nur einzelne Photonen in den Resonator eingebracht werden. „Damit kann es zu keiner Selbstverstärkung und auch zu keinem Schwellverhalten kommen“, erklärt François Dubin, französischer Postdoc und Erstautor der Veröffentlichung. Dieser „Quantenlaser“ wurde bereits vor einigen Jahren in einem ähnlichen System demonstriert. Clou des Innsbrucker Experiments ist die einstellbare Kopplung des Atoms an der Resonatormode. Durch geeignete Wahl der Parameter des Anregungslasers konnten die Physiker der Universität Innsbruck eine stärkere Anregung erreichen und dadurch mehr Photonen in den Resonator einbringen. Obwohl im Mittel immer noch weniger als ein Photon im Resonator vorhanden war, konnten Selbstverstärkungseffekte in Form eines Schwellverhaltens beobachtet werden. „Ein einzelnes Atom ist ein sehr schwacher Verstärker. Daher ist das Schwellverhalten nicht so stark ausgeprägt wie bei einem klassischen Laser“, erläutert Piet Schmidt die Ergebnisse.

Eine noch stärkere Anregung führt im Gegensatz zum klassischen Laser nicht zu einer höheren Ausgangsleistung, sondern aufgrund quantenmechanischer Interferenzen zum Verlöschen des Lasers. Dies stellt eine fundamentale Einschränkung für Miniaturlaser bestehend aus wenigen Atomen dar. Die Innsbrucker Forscher wollen daher nun den Übergang vom Quantenlaser zum klassischen Laser durch kontrolliertes Hinzufügen von weiteren Atomen genauer untersuchen.

Unterstützt wurden die Arbeiten vom österreichischen Wissenschaftsfonds FWF, der Europäischen Kommission und der Industriellenvereinigung Tirol.

Bilder: http://www.uibk.ac.at/public-relations/presse/archiv/2010/032801/

Publikation: F. Dubin, C. Russo, H.G. Barros, A. Stute, C. Becher, P.O. Schmidt and R. Blatt, „Quantum to classical transition in a single ion laser“, Nature Physics, published online: 28 March 2010 | doi: 10.1038/NPHYS1627. (http://dx.doi.org/10.1038/NPHYS1627)

Kontakt:
Univ.-Prof. Dr. Piet.Schmidt
QUEST Institut for Experimental Quantum Metrology
Physikalisch-Technische Bundesanstalt
Bundesallee 100, D-38116 Braunschweig
Tel.: ++49 531 592-4700
Email: Piet.Schmidt@ptb.de
Web: http://www.quantummetrology.de/
Univ.-Prof. Dr. Rainer Blatt
Institut für Experimentalphysik
Universität Innsbruck
Technikerstraße 25, A-6020 Innsbruck
Tel.: ++43 512 507-6350
Email: Rainer.Blatt@uibk.ac.at
Web: http://www.quantumoptics.at
Dr. Christian Flatz
Büro für Öffentlichkeitsarbeit
Universität Innsbruck
Innrain 52, A-6020 Innsbruck
Tel.: ++43 512 507-32022
Mobil: +43 650 5777122
Email: Christian.Flatz@uibk.ac.at
Web: http://www.uibk.ac.at/

Dr. Christian Flatz | Universität Innsbruck
Weitere Informationen:
http://www.uibk.ac.at/
http://www.quantumoptics.at
http://www.quantummetrology.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften