Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Klang der Saturnringe: RUB-Physiker erklären nichtlineare Schallwellen in staubigen Plasmen

16.10.2012
Bengt Eliasson zum Mitglied der Americal Physical Society gewählt

Staubige Plasmen sind zahlreich im Weltall und im Labor. Sie kommen unter anderem in den Saturnringen vor. Aufgrund ihrer speziellen Eigenschaften können sich in ihnen spontan Schallwellen ausbreiten, so wie in der Luft.

Die RUB-Physiker Prof. Dr. Dr. h.c. Padma Kant Shukla und Dr. Bengt Eliasson haben ein Modell publiziert, das erklärt, wie nichtlineare Schallwellen in staubigen Plasmen entstehen. Die Forscher der Fakultät für Physik und Astronomie berichten in der Zeitschrift Physical Review E.

Unterschiedliche akustische Phänomene in staubigen Plasmen

Staubige Plasmen bestehen üblicherweise aus Elektronen, positiv geladenen Ionen, neutralen Atomen und Staubkörnchen, die negativ oder positiv geladen sind. Nur in Plasmen mit solchen Staubkörnern können Schallwellen entstehen – die sogenannten Staub-Schallwellen. Die Trägheit der massereichen Staubkörner ist für ihre Entstehung entscheidend. Der Druck der heißen Elektronen und Ionen des Plasmas liefert die Rückstellkraft, die die Plasmateilchen in Schwingungen versetzt und dafür sorgt, dass sich die Schallwelle ausbreitet. Zahlreiche Experimente offenbarten kürzlich nichtlineare akustische Wellen mit extrem großen Amplituden in staubigen Plasmen, nämlich einzelne akustische Pulse und Schockwellen. Padma Shukla und Bengt Eliasson haben jetzt eine Theorie entwickelt, die beschreibt, unter welchen Umständen nichtlineare Schockwellen und Pulse in staubigen Plasmen auftreten.

Mit sich selbst interagierende Schallwellen

Staub-Schallwellen mit großen Amplituden interagieren miteinander. Dabei entstehen neue Wellen mit neuen Frequenzen. Durch die Entstehung von Harmonischen (also Wellen mit Frequenzen, die ein ganzzahliges Vielfaches der Ausgangsfrequenz sind) und durch konstruktive Interferenz können sich die Wellen zu einzelnen Pulsen („Spikes“) entwickeln oder zu Schockwellen. Die Einzelpulse treten auf, wenn Nichtlinearitäten bei der Entstehung der Harmonischen mit der Zerstreuung der Welle im Lauf der Zeit zusammenspielen. Schockwellen bilden sich hingegen, wenn die Zähflüssigkeit des Staubs stärker ist als die Zerstreuung der Welle. Das passiert bei hohen Staubdichten, wenn die Staubpartikel so nah zusammenkommen, dass sie interagieren und mit Nachbarpartikeln kollidieren.

Theorie erklärt experimentelle Daten

Die neue Shukla-Eliasson-Theorie erklärt die Beobachtungen aus Experimenten von drei verschiedenen Arbeitsgruppen in den Vereinigten Staaten (Robert Merlino), Taiwan (Lin I) und Indien (Predhiman Kaw). Die Forscher hatten die Existenz von Einzelpulsen und Schockwellen mit großen Amplituden bei Entladungen von Tieftemperaturplasmen beschrieben. Mit dem neuen Modell lässt sich aus der Weite der Schockwelle die Zähflüssigkeit des Staubes bestimmen. „Unsere Ergebnisse sind auch wichtig, um den möglichen Mechanismus zu verstehen, der der Clusterbildung von Staubkörnern in Planeten und Regionen sich bildender Sterne zugrunde liegt“, erklärt Prof. Padma Shukla.

Existenz von Schallwellen in staubigen Plasmen vor mehr als zwei Jahrzehnten vorhergesagt

Vor über zwei Jahrzehnten sagte Prof. Shukla theoretisch lineare und nichtlineare Schallwellen in staubigen Plasmen voraus. Viele Laborexperimente haben die Theorie seither bestätigt. Die Entdeckung der Schallwellen hat die Plasmaphysik verändert und ein neues interdisziplinäres Forschungsfeld zum Vorschein gebracht an der Schnittstelle zwischen Astrophysik und der Physik der kondensierten Materie.

APS-Mitgliedschaft für die Beiträge zu „computational physics“ und zur nichtlinearen Plasmaphysik

Für seine entscheidenden Beiträge zur nichtlinearen Plasmaphysik und zu „computational physics” wurde Dr. Bengt Eliasson im September 2012 zum Mitglied der American Physical Society (APS) gewählt –eine große Auszeichnung durch die Forscherkollegen. Die APS nimmt jährlich weniger als ein Prozent neue Mitglieder auf, bezogen auf die aktuelle Mitgliederzahl. Bengt Eliasson erlangte einen Masterabschluss in Engineering Physics an der Universität in Uppsala, Schweden, wo er sich auch in Numerischer Analysis promovierte. Seit 2003 arbeitet er an der Ruhr-Universität Bochum in Prof. Shuklas Labor. Seine Beiträge zu verschiedenen Bereichen der Astro- und Plasmaphysik reichen von Simulationen der Erd-Ionosphäre im großen Maßstab bis hin zu numerischen Modellen von Quantenplasmen. Die Ergebnisse seiner Forschungsprojekte veröffentlichte Eliasson in etwa 150 wissenschaftlichen Artikeln. Er wurde unter anderem zu Vorträgen zur European Geophyiscal Union, European Physical Society, American Physical Society sowie zum International Congress of Plasma Physics eingeladen.

Titelaufnahme

P. K. Shukla, B. Eliasson (2012): Nonlinear dynamics of large-amplitude dust acoustic shocks and solitary pulses in dusty plasmas, Physical Review E, doi: 10.1103/PhysRevE.86.046402

Weitere Informationen

Prof. Dr. Dr. h.c. Padma Kant Shukla, RUB International Chair, Fakultät für Physik und Astronomie, Ruhr-Universität Bochum, 44780 Bochum, Tel. 0234/32-23759
ps@tp4.rub.de

Redaktion: Dr. Julia Weiler

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Magnetische Kontrolle per Handzeichen: Team entwickelt elektronische „Haut“ für virtuelle Realität
22.01.2018 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Vollmond-Dreierlei am 31. Januar 2018
22.01.2018 | Max-Planck-Institut für Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Warum genau diese 20? – Quantenchemie löst Aminosäure-Rätsel

22.01.2018 | Biowissenschaften Chemie

Simulation: Neuartiger zweidimensionaler Schaltkreis funktioniert mit magnetischen Quantenteilchen

22.01.2018 | Physik Astronomie

Vogelmonitoring leicht gemacht: Erfassung der Brutvögel wird digitalisiert

22.01.2018 | Ökologie Umwelt- Naturschutz