KIT-Forscher bauen optische Tarnkappe für den Nebel

Im diffus streuenden Medium bewegt sich Licht auf zufälligen Bahnen (Lupe). Darin wirft ein normaler Gegenstand (links) einen Schatten, einer mit Tarnkappe (rechts) nicht. Bild: R. Schittny/KIT

Die Gesetze der Physik verhindern es, dass eine optische Tarnkappe Objekte in Luft für beliebige Richtungen, Farben und Polarisationen unsichtbar macht. Ändert man jedoch das Medium, so wird es sehr viel einfacher Objekte zu tarnen.

Physiker des KIT haben nun mit relativ einfachen Mitteln eine ideale Tarnkappe für lichtstreuende Umgebungen wie etwa Nebel oder Milch hergestellt und erfolgreich getestet. Ihre Ergebnisse erscheinen in der renommierten Zeitschrift Science. (DOI: 10.1126/science.1254524)

In diffusiven Medien breitet sich Licht nicht mehr geradlinig aus, sondern wird von den Partikeln im Medium ständig gestreut. Bekannte Beispiele sind Nebel, Wolken oder Milchglasscheiben, die zwar Licht einlassen, aber die Lichtquelle verschleiern. „Diese Eigenschaft von lichtstreuenden Medien lässt sich nutzen, um Objekte darin zu verstecken“, sagt Robert Schittny, der Erstautor der Studie. „Dabei sind die neuen Tarnkappen eigentlich ganz einfach aufgebaut.“

Im Experiment benutzte Schittny eine ausgedehnte Lichtquelle, die von hinten einen einige Zentimeter schmalen Plexiglas-Tank beleuchtete, der mit einer weißen, trüben Flüssigkeit gefüllt war. Objekte darin werfen einen sichtbaren Schatten auf die Behälterwand. Als Testobjekt dienen einfache Metallzylinder oder -kugeln mit einigen Zentimetern Durchmesser. Um diese zu tarnen, werden sie zunächst mit weißer Dispersionsfarbe gestrichen, sodass sie Licht diffus reflektieren.

Um das Licht schließlich um das Objekt herumzulenken, bringen die Forscher eine dünne Schale des transparenten Silikonwerkstoffs PDMS auf, in den sie zuvor lichtstreuende Melamin-Mikropartikel in geeigneter Konzentration gemischt haben. Nun sorgt die Silikon/Melamin-Schale für eine schnellere Diffusion als in der Umgebung und lenkt damit das Licht um die Objekte, die somit keinen Schatten mehr werfen. „Das Verschwinden des Schattens ist der Beweis für gelungenes Tarnen.“

„Ideale optische Tarnkappen in Luft haben alle einen Pferdefuß“ macht Martin Wegener klar, der am KIT am Institut für Angewandte Physik und am Institut für Nanotechnologie forscht. „Sie verletzen Albert Einsteins Relativitätstheorie, die eine Obergrenze für die Lichtgeschwindigkeit vorschreibt.“ In diffusen Medien, in denen das Licht mehrfach gestreut wird, reduziert sich jedoch die effektive Lichtgeschwindigkeit. Hier lassen sich ideale Tarnkappen verwirklichen.

Bei der aktuellen Studie von Wegener und Schittny, die vom DFG-Center for Functional Nanostructures (CFN) gefördert wurde, handelt es sich um Grundlagenforschung und den Beweis des Wirkprinzips. „Bis zu realen Anwendungen ist es noch lang hin, aber mit dem nun gefundenen Prinzip könnte man Milchglasfenster für Badezimmer herstellen, in denen Metallstangen gegen Einbrecher oder Sensoren integriert sind – ohne dass man Sensoren oder Stangen von Innen oder Außen sehen könnte“ erläutert Schittny.

Invisibility Cloaking in a Diffusive Light Scattering Medium, R.Schittny, M. Kadic, T. Bückmann, and M. Wegener, DOI: 10.1126/science.1254524

Weiterer Kontakt:
Kosta Schinaraki
Presse, Kommunikation und Marketing, Themenscout
Tel.: +49 721 608-41956
Fax: +49 721 608-43658
E-Mail:schinarakis@kit.edu

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts nach den Gesetzen des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Thematische Schwerpunkte der Forschung sind Energie, natürliche und gebaute Umwelt sowie Gesellschaft und Technik, von fundamentalen Fragen bis zur Anwendung. Mit rund 9400 Mitarbeiterinnen und Mitarbeitern, darunter mehr als 6000 in Wissenschaft und Lehre, sowie 24 500 Studierenden ist das KIT eine der größten Forschungs- und Lehreinrichtungen Europas. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Diese Presseinformation ist im Internet abrufbar unter: www.kit.edu

Das Foto steht auf www.kit.edu zum Download bereit und kann angefordert werden unter: presse@kit.edu oder +49 721 608-47414. Die Verwendung des Bildes ist ausschließlich in dem oben genannten Zusammenhang gestattet.

http://www.kit.edu/kit/pi_2014_15233.php

Media Contact

Monika Landgraf Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer