Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

In der Kinderstube von Planeten

31.01.2013
Astronomen bestimmen die Masse der Gas- und Staubscheibe um den Stern TW Hydrae

Die Scheibe um den jungen Stern TW Hydrae gilt als Musterbeispiel für die Kinderstube von Planeten. Wegen ihrer vergleichsweise geringen Distanz von 176 Lichtjahren spielt das Objekt eine Schlüsselrolle in kosmischen Geburtsszenarien.


Geburtsort von Planeten: Neue Messungen, an denen auch Thomas Henning vom Heidelberger Max-Planck-Institut für Astronomie beteiligt war, haben für die Gas- und Staubscheibe um den jungen Stern TW Hydrae eine größere Masse ergeben als zuvor angenommen. Das Bild zeigt die Scheibe in einer künstlerischen Darstellung. © Axel M. Quetz (MPIA)

Mit dem Weltraumteleskops Herschel haben Forscher, unter ihnen auch Thomas Henning vom Max-Planck-Institut für Astronomie in Heidelberg, erstmals recht präzise die Masse der Scheibe bestimmt. Der neue Wert ist größer als frühere Schätzungen und zeigt, dass in diesem System Planeten ähnlich denen unseres Sonnensystems entstehen können. Nicht zuletzt sind die Beobachtungen ein Beispiel dafür, dass sich in der Wissenschaft nicht alles planen lässt.

Die Ägyptologen haben den Stein von Rosette, Genetiker die Fruchtfliege. Für Astronomen, die sich mit der Geburt von Planeten befassen, ist TW Hydrae in der Konstellation Wasserschlange (lat. Hydra) der Schlüssel zu ihrem Fachgebiet: ein junger Stern mit ungefähr derselben Masse wie die Sonne, umgeben von einer protoplanetaren Scheibe aus dichtem Gas und Staub, in der kleine Partikel zu immer größeren Gebilden zusammenklumpen, bis am Ende ganze Planeten entstehen. Auf ähnliche Weise hat sich vor mehr als vier Milliarden Jahren auch unser Sonnensystem gebildet.

Die Scheibe um TW Hydrae liegt nur 176 Lichtjahren von der Erde entfernt – alle anderen uns bekannten Scheiben haben die mehr als zweieinhalbfache Distanz – und lässt sich daher sehr detailliert beobachten. Zwar können die Astronomen von dem Objekt aufgrund der Größenverhältnisse keine direkten Bilder anfertigen; aber indem sie das Lichts des Systems bei unterschiedlichen Wellenlängen untersuchen und die dabei gewonnenen Spektren mit Modellen vergleichen, erschließen die Forscher wichtige Eigenschaften.

Wenngleich TW Hydrae aus den genannten Gründen eine der am häufigsten beobachteten und am gründlichsten untersuchten protoplanetaren Scheiben überhaupt besitzt, war einer ihrer grundlegenden Parameter bisher nur sehr ungenau bekannt: die Masse des enthaltenen Gases aus Wasserstoffmolekülen. Dieser Wert wiederum gestattet es den Wissenschaftlern abzuschätzen, wie viele und welche Sorten von Planeten dort entstehen können. Versuche, die Masse des molekularen Wasserstoffs zu bestimmen, hingen empfindlich von den verwendeten Modellen ab. Daher umfassten bisherige Abschätzungen einen vergleichsweise großen Bereich und variierten zwischen einer halben und mehr als 60 Jupitermassen.

Die neuen Messungen nutzen die Tatsache, dass es bei den Wasserstoffmolekülen selbst subtile Unterschiede gibt: Einige wenige Moleküle bestehen nicht aus zwei normalen Wasserstoffatomen, sondern enthalten ein Deuteriumatom; der Atomkern von Wasserstoff besteht nur aus einem einzigen Proton, Deuterium hingegen besitzt ein zusätzliches Neutron. Wegen dieses feinen Unterschieds ist die Infrarotstrahlung, die mit der Rotation der Moleküle zusammenhängt, bei diesen Wasserstoffdeuterid-Molekülen ungleich stärker als bei normalen Wasserstoffmolekülen.

Das Satellitenteleskop Herschel der europäischen Raumfahrtagentur ESA bietet im Wellenlängenbereich dieser Strahlung eine sonst unerreichbare Kombination aus Empfindlichkeit und spektraler Auflösung. Unter diesen Voraussetzungen gelang es den Astronomen nun, die ungewöhnlichen Moleküle nachzuweisen. Das Ergebnis ist zehnfach genauer als alle vorigen Massenbestimmungen: Danach muss die Scheibe eine Mindestmasse von rund 52 Jupitermassen haben.

Altersschätzungen für TW Hydrae führen auf Werte zwischen drei und zehn Millionen Jahre, was für Sternsysteme mit Scheibe relativ viel ist. Die neuen Massenmessungen zeigen, dass trotz des hohen Alters noch genügend Materie existiert, um ein Planetensystem größer als unseres entstehen zu lassen. Mit anderen Worten: Unser Sonnensystem ist aus einer deutlich masseärmeren Scheibe hervorgegangen.

Auf dieser soliden Grundlage und unter Einbeziehungen weiterer Eigenschaften wie der Temperaturverteilung, die sich aus Folgebeobachtungen mit dem Teleskopverbund ALMA in Chile noch deutlich genauer erschließen lassen sollte, wird es in Zukunft möglich sein, weit realistischere Modelle für die Scheibe von TW Hydrae zu entwickeln. Der Vergleich dieser Modelle mit den Beobachtungsdaten wiederum sollte es erlauben, die gängigen Theorien der Planetenentstehung auf die Probe zu stellen.

Die Beobachtungen sind auch deswegen interessant, weil sie Einblicke in den Wissenschaftsbetrieb bieten: Nach den Worten von Thomas Henning, Direktor am Heidelberger Max-Planck-Institut für Astronomie, begann das Projekt in einem Gespräch zwischen Ted Bergin, Ewine van Dieshoek und ihm. „Uns wurde klar, dass Herschel unsere einzige Möglichkeit war, um Wasserstoffdeuterid in dieser Scheibe zu beobachten – und damit eine Chance, die wir uns nicht entgehen lassen konnten“, sagt Henning.

Man habe aber auch gemerkt, dass man mit diesen Beobachtungen ein Risiko eingehen würde: „Eine der Modellrechnungen sagte voraus, dass wir mit Herschel überhaupt nichts sehen würden. Stattdessen waren unsere Beobachtungsdaten am Ende besser, als wir zu hoffen gewagt hatten“, so der Max-Planck-Forscher.

TW Hydrae ist damit ein Lehrstück für Gremien, die Forschungsmittel oder, wie in der Astronomie üblich, Beobachtungszeit an großen Teleskopen vergeben – und die dabei im ungünstigsten Falle so konservativ vorgehen, dass Antragssteller fast garantieren müssen, dass ihr Projekt erfolgreich verlaufen wird. Thomas Henning: „Wenn nicht die geringste Chance besteht, dass ein Projekt schiefgeht, dann dürfte es wissenschaftlich nicht besonders interessant ein. TW Hydrae ist ein Paradebeispiel dafür, wie es sich in der Wissenschaft lohnen kann, ein kalkuliertes Risiko einzugehen.“

Ansprechpartner

Prof. Dr. Thomas Henning,
Max-Planck-Institut für Astronomie, Heidelberg
Telefon: +49 6221 528-200
Fax: +49 6221 528-339
E-Mail: henning@­mpia.de
Dr. Markus Pössel,
Öffentlichkeitsarbeit
Max-Planck-Institut für Astronomie, Heidelberg
Telefon: +49 6221 528-261
Fax: +49 6221 528-246
E-Mail: pr@­mpia.de
Hintergrund
Wenn Astronomen die Menge oder Häufigkeit eines bestimmten Stoffes nachweisen wollen, suchen sie nach Licht, das für diesen spezifischen Stoff charakteristisch ist. Für Wasserstoffmoleküle funktioniert dieses Rezept nicht, da diese Moleküle kaum Strahlung aussenden.
Originalpublikation
E. A. Bergin, Th. Henning et al.
An Old Disk That Can Still Form a Planetary System
Nature, 31. Januar 2013

Prof. Dr. Thomas Henning | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/6882204/In_der_Kinderstube_von_Planeten1

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Biophysik - Blitzlicht aus der Nanowelt
24.04.2018 | Ludwig-Maximilians-Universität München

nachricht Moleküle brillant beleuchtet
23.04.2018 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von der Genexpression zur Mikrostruktur des Gehirns

24.04.2018 | Biowissenschaften Chemie

Bestrahlungserfolg bei Hirntumoren lässt sich mit kombinierter PET/MRT vorhersagen

24.04.2018 | Medizintechnik

RWI/ISL-Containerumschlag-Index auf hohem Niveau deutlich rückläufig

24.04.2018 | Wirtschaft Finanzen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics