Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

In der Kinderstube von Planeten

31.01.2013
Astronomen bestimmen die Masse der Gas- und Staubscheibe um den Stern TW Hydrae

Die Scheibe um den jungen Stern TW Hydrae gilt als Musterbeispiel für die Kinderstube von Planeten. Wegen ihrer vergleichsweise geringen Distanz von 176 Lichtjahren spielt das Objekt eine Schlüsselrolle in kosmischen Geburtsszenarien.


Geburtsort von Planeten: Neue Messungen, an denen auch Thomas Henning vom Heidelberger Max-Planck-Institut für Astronomie beteiligt war, haben für die Gas- und Staubscheibe um den jungen Stern TW Hydrae eine größere Masse ergeben als zuvor angenommen. Das Bild zeigt die Scheibe in einer künstlerischen Darstellung. © Axel M. Quetz (MPIA)

Mit dem Weltraumteleskops Herschel haben Forscher, unter ihnen auch Thomas Henning vom Max-Planck-Institut für Astronomie in Heidelberg, erstmals recht präzise die Masse der Scheibe bestimmt. Der neue Wert ist größer als frühere Schätzungen und zeigt, dass in diesem System Planeten ähnlich denen unseres Sonnensystems entstehen können. Nicht zuletzt sind die Beobachtungen ein Beispiel dafür, dass sich in der Wissenschaft nicht alles planen lässt.

Die Ägyptologen haben den Stein von Rosette, Genetiker die Fruchtfliege. Für Astronomen, die sich mit der Geburt von Planeten befassen, ist TW Hydrae in der Konstellation Wasserschlange (lat. Hydra) der Schlüssel zu ihrem Fachgebiet: ein junger Stern mit ungefähr derselben Masse wie die Sonne, umgeben von einer protoplanetaren Scheibe aus dichtem Gas und Staub, in der kleine Partikel zu immer größeren Gebilden zusammenklumpen, bis am Ende ganze Planeten entstehen. Auf ähnliche Weise hat sich vor mehr als vier Milliarden Jahren auch unser Sonnensystem gebildet.

Die Scheibe um TW Hydrae liegt nur 176 Lichtjahren von der Erde entfernt – alle anderen uns bekannten Scheiben haben die mehr als zweieinhalbfache Distanz – und lässt sich daher sehr detailliert beobachten. Zwar können die Astronomen von dem Objekt aufgrund der Größenverhältnisse keine direkten Bilder anfertigen; aber indem sie das Lichts des Systems bei unterschiedlichen Wellenlängen untersuchen und die dabei gewonnenen Spektren mit Modellen vergleichen, erschließen die Forscher wichtige Eigenschaften.

Wenngleich TW Hydrae aus den genannten Gründen eine der am häufigsten beobachteten und am gründlichsten untersuchten protoplanetaren Scheiben überhaupt besitzt, war einer ihrer grundlegenden Parameter bisher nur sehr ungenau bekannt: die Masse des enthaltenen Gases aus Wasserstoffmolekülen. Dieser Wert wiederum gestattet es den Wissenschaftlern abzuschätzen, wie viele und welche Sorten von Planeten dort entstehen können. Versuche, die Masse des molekularen Wasserstoffs zu bestimmen, hingen empfindlich von den verwendeten Modellen ab. Daher umfassten bisherige Abschätzungen einen vergleichsweise großen Bereich und variierten zwischen einer halben und mehr als 60 Jupitermassen.

Die neuen Messungen nutzen die Tatsache, dass es bei den Wasserstoffmolekülen selbst subtile Unterschiede gibt: Einige wenige Moleküle bestehen nicht aus zwei normalen Wasserstoffatomen, sondern enthalten ein Deuteriumatom; der Atomkern von Wasserstoff besteht nur aus einem einzigen Proton, Deuterium hingegen besitzt ein zusätzliches Neutron. Wegen dieses feinen Unterschieds ist die Infrarotstrahlung, die mit der Rotation der Moleküle zusammenhängt, bei diesen Wasserstoffdeuterid-Molekülen ungleich stärker als bei normalen Wasserstoffmolekülen.

Das Satellitenteleskop Herschel der europäischen Raumfahrtagentur ESA bietet im Wellenlängenbereich dieser Strahlung eine sonst unerreichbare Kombination aus Empfindlichkeit und spektraler Auflösung. Unter diesen Voraussetzungen gelang es den Astronomen nun, die ungewöhnlichen Moleküle nachzuweisen. Das Ergebnis ist zehnfach genauer als alle vorigen Massenbestimmungen: Danach muss die Scheibe eine Mindestmasse von rund 52 Jupitermassen haben.

Altersschätzungen für TW Hydrae führen auf Werte zwischen drei und zehn Millionen Jahre, was für Sternsysteme mit Scheibe relativ viel ist. Die neuen Massenmessungen zeigen, dass trotz des hohen Alters noch genügend Materie existiert, um ein Planetensystem größer als unseres entstehen zu lassen. Mit anderen Worten: Unser Sonnensystem ist aus einer deutlich masseärmeren Scheibe hervorgegangen.

Auf dieser soliden Grundlage und unter Einbeziehungen weiterer Eigenschaften wie der Temperaturverteilung, die sich aus Folgebeobachtungen mit dem Teleskopverbund ALMA in Chile noch deutlich genauer erschließen lassen sollte, wird es in Zukunft möglich sein, weit realistischere Modelle für die Scheibe von TW Hydrae zu entwickeln. Der Vergleich dieser Modelle mit den Beobachtungsdaten wiederum sollte es erlauben, die gängigen Theorien der Planetenentstehung auf die Probe zu stellen.

Die Beobachtungen sind auch deswegen interessant, weil sie Einblicke in den Wissenschaftsbetrieb bieten: Nach den Worten von Thomas Henning, Direktor am Heidelberger Max-Planck-Institut für Astronomie, begann das Projekt in einem Gespräch zwischen Ted Bergin, Ewine van Dieshoek und ihm. „Uns wurde klar, dass Herschel unsere einzige Möglichkeit war, um Wasserstoffdeuterid in dieser Scheibe zu beobachten – und damit eine Chance, die wir uns nicht entgehen lassen konnten“, sagt Henning.

Man habe aber auch gemerkt, dass man mit diesen Beobachtungen ein Risiko eingehen würde: „Eine der Modellrechnungen sagte voraus, dass wir mit Herschel überhaupt nichts sehen würden. Stattdessen waren unsere Beobachtungsdaten am Ende besser, als wir zu hoffen gewagt hatten“, so der Max-Planck-Forscher.

TW Hydrae ist damit ein Lehrstück für Gremien, die Forschungsmittel oder, wie in der Astronomie üblich, Beobachtungszeit an großen Teleskopen vergeben – und die dabei im ungünstigsten Falle so konservativ vorgehen, dass Antragssteller fast garantieren müssen, dass ihr Projekt erfolgreich verlaufen wird. Thomas Henning: „Wenn nicht die geringste Chance besteht, dass ein Projekt schiefgeht, dann dürfte es wissenschaftlich nicht besonders interessant ein. TW Hydrae ist ein Paradebeispiel dafür, wie es sich in der Wissenschaft lohnen kann, ein kalkuliertes Risiko einzugehen.“

Ansprechpartner

Prof. Dr. Thomas Henning,
Max-Planck-Institut für Astronomie, Heidelberg
Telefon: +49 6221 528-200
Fax: +49 6221 528-339
E-Mail: henning@­mpia.de
Dr. Markus Pössel,
Öffentlichkeitsarbeit
Max-Planck-Institut für Astronomie, Heidelberg
Telefon: +49 6221 528-261
Fax: +49 6221 528-246
E-Mail: pr@­mpia.de
Hintergrund
Wenn Astronomen die Menge oder Häufigkeit eines bestimmten Stoffes nachweisen wollen, suchen sie nach Licht, das für diesen spezifischen Stoff charakteristisch ist. Für Wasserstoffmoleküle funktioniert dieses Rezept nicht, da diese Moleküle kaum Strahlung aussenden.
Originalpublikation
E. A. Bergin, Th. Henning et al.
An Old Disk That Can Still Form a Planetary System
Nature, 31. Januar 2013

Prof. Dr. Thomas Henning | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/6882204/In_der_Kinderstube_von_Planeten1

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor
23.02.2017 | Universität Bayreuth

nachricht Kühler Zwerg und die sieben Planeten
23.02.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie