Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kernspinresonanz mit niedrigen Magnetfeldern

20.07.2015

Jülicher Forscher erhöhen Empfindlichkeit von NMR-Messungen durch neuen Empfänger

Ein kleines Bauteil, das Messsignale verstärkt und störendes Rauschen unterdrückt – das präsentieren Jülicher und Aachener Forscher in der aktuellen Ausgabe von "Nature Physics". Entwickelt haben sie es für Kernspinresonanz-Messungen in der Batterieforschung.


Prototyp des Niederfeld-NMR-EmpfängersPrototyp des Niederfeld-NMR-Empfängers

Copyright: Forschungszentrum Jülich

Die Technik wird typischerweise etwa für bildgebende Verfahren in der Medizin (MRT) oder die Analyse von Molekülstrukturen in der Biologie und Chemie (NMR) eingesetzt. Der neue Empfänger ermöglicht eine hohe Empfindlichkeit bei niedrigen Frequenzen auch ohne extrem starke und teure Magnete, die normalerweise für präzise Messungen benötigt werden.

Seit einigen Jahren arbeiten Forscher an der kleinen Schwester der etablierten Hochfeld-NMR, der Niederfeld-NMR. Während bei der Hochfeld-NMR (Nuclear Magnetic Resonance) immer stärkere Magnete immer mehr Informationen liefern sollen, geht die Niederfeld-NMR den entgegengesetzten Weg:

Schwächere Magnete sollen vergleichbare Ergebnisse liefern wie die großen Elektro- oder supraleitenden Magnete. Das ist nicht nur deutlich preiswerter, die Geräte wären auch deutlich kompakter und entsprechend gut zu transportieren. So ergeben sich neue Anwendungsmöglichkeiten, an die bislang nicht zu denken war.

Die Geräte könnten beispielsweise mobil in der Medizin, zur Überwachung von Umwandlungsprozessen in der chemischen Industrie oder zur Analyse bei Erdölbohrungen zum Einsatz kommen. Von der neuen Methode könnte insbesondere auch die Batterieforschung profitieren:

"Wir wollen damit Lithium-Ionen Batterien untersuchen. Es gibt bisher kaum Möglichkeiten, um im laufenden Betrieb an gebrauchsfertigen Batterien die ablaufenden elektrochemischen Prozesse zerstörungsfrei zu verfolgen. Mit dieser Methode könnte das gelingen", berichtet Martin Süfke, Doktorand am Jülicher Institut für Energie- und Klimaforschung (IEK-9).

Das Jülich-Aachener Wissenschaftler-Team hatte bereits in der Vergangenheit verwandte Techniken entwickelt, die auch ohne starke Magnetfelder hochauflösende NMR-Spektroskopie ermöglichen. "Wir konnten sogar schon mit höchster Genauigkeit im Erdmagnetfeld messen. Aber die Analyse der Spektren war vergleichsweise aufwändig", sagt Prof. Stephan Appelt, der am Jülicher Zentralinstitut für Engineering, Elektronik und Analytik (ZEA-2) und als Professor an der RWTH Aachen arbeitet. Gemeinsam mit seinem Aachener Kollegen Prof. Bernhard Blümich hat er die Verfahren auf den Weg gebracht.

"Dem Prototyp des Niederfeld-NMRs, den wir jetzt entwickelt haben, liegt dagegen ein neues, sehr einfaches Konzept zugrunde", erklärt Appelt. Noch existiert das Gerät nur als etwa handtaschengroßer Prototyp. "Weitere technologische Entwicklungen könnten es in Zukunft ermöglichen den Prototypen auf Handyformat zu schrumpfen", sagt Appelt.

Entscheidendes Bauteil ist der sogenannte externe Resonator, ein rauscharmer ferromagnetischer Kern umwickelt mit einer Spule, dazu ein Kondensator. "Das Funktionsprinzip gleicht dem eines unglaublich empfindlichen Lang- und Mittelwellenradios", erklärt Süfke. "Entscheidend ist, dass der Empfangskreis das Messsignal erheblich mehr verstärkt als das störende Rauschen, dadurch wird die gesamte Messung empfindlicher."

Die sehr hohe Empfindlichkeit bei niedrigen Frequenzen bringt weitere Vorteile mit sich. "In Zukunft könnte man eine Vielzahl von Elementen nachweisen, die für die chemische Katalyse und Elektrochemie wichtig sind. Dazu gehören etwa Rhodium, Wolfram, Silber und Lithium, deren Messung mit konventionellen Hochfeld-NMRs sehr lange dauert", ergänzt Appelt. Als Fernziel erhoffen sich die Forscher neue Erkenntnisse in der Quantenphysik und Grundlagenforschung.

In ersten Experimenten haben die Forscher bereits eine hundertfache Verstärkung des Messsignals gegenüber herkömmlichen Versuchsanordnungen erreicht. "Wir sind damit bei gleichen Ausgangsbedingungen schon so empfindlich wie ein Hochfeld-NMR bei etwa 10 Tesla", sagt Appelt. "Und wir haben berechnet, dass eine weitere Verbesserung um einen weiteren Faktor Hundert möglich sein müsste." Der Forscher hat mathematische Modelle entwickelt, die das Verhalten des neuen Empfängers beschreiben. Sie helfen den Forschern nun, ihr System gezielt weiterzuentwickeln.

Originalpublikation:
Martin Süfke, Alexander Liebisch, Bernhard Blümich, Stephan Appelt, External high-quality-factor resonator tunes up nuclear magnetic resonance, Nature Physics, (published online 6 July 2015), doi:10.1038/nphys3382
http://dx.doi.org/10.1038/nphys3382

Weiterführende Informationen:
Zentralinstitut für Engineering, Elektronik und Analytik, Bereich Systeme der Elektronik (ZEA-2):
http://www.fz-juelich.de/zea/zea-2/DE/Home/home_node.html 
Institut für Energie- und Klimaforschung, Bereich Grundlagen der Elektrochemie (IEK-9):
http://www.fz-juelich.de/iek/iek-9/DE/Home/home_node.html
Institut für Technische und Makromolekulare Chemie (ITMC) der RWTH Aachen, Lehrstuhl für Makromolekulare Chemie:
http://www.mc.rwth-aachen.de/

Ansprechpartner:

Dipl.-Chem. Martin Süfke,
Institut für Energie- und Klimaforschung, Bereich Grundlagen der Elektrochemie (IEK-9)
Tel. +49 2461 61-4511
E-Mail: m.suefke@fz-juelich.de

Univ. Prof. Dr. rer. nat. Stephan Appelt
Zentralinstitut für Engineering, Elektronik und Analytik, Bereich Systeme der Elektronik (ZEA-2)
Tel. +49 2461 61-3884
E-Mail: st.appelt@fz-juelich.de

Pressekontakt:

Erhard Zeiss, M.A.
Unternehmenskommunikation
Tel.: +49 2461 61-1841
E-Mail: e.zeiss@fz-juelich.de

Erhard Zeiss | Forschungszentrum Jülich

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen