Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kernmaterie am kritischen Punkt

28.07.2010
Mittels hochpräziser Messverfahren untersuchen Forscher des Max-Planck-Instituts für Kernphysik die Eigenschaften von Kernmaterie. Neueste Ergebnisse aus einem Experiment an ISOLDE/CERN für die Masse zweier Krypton-Isotope ergeben eine bessere Abgrenzung für Quanten-Phasenübergänge in Atomkernen.
[Physical Review Letters, 105, 032502 (2010)]

Fest – flüssig – gasförmig. Dies sind die uns aus dem Alltag vertrauten Aggregatzustände, in der Wissenschaft Phasen genannt. Sie sind von einander abgegrenzt und der Übergang von einer Phase zur anderen – Schmelzen, Verdampfen oder Sublimieren wie auch ihre Umkehrungen – ist durch Temperatur und Druck bestimmt.

So lehrt es die klassische Thermodynamik, die sehr allgemeine statistische Theorie für Systeme aus vielen wechselwirkenden Teilchen: im Alltagsbeispiel Atome oder Moleküle. Wie verhalten sich aber die Bestandteile von Atomen, die Elektronen und Kerne? Gibt es auch hier Aggregatzustände und Phasenübergänge und wovon hängen diese ab? Mit diesen Fragen haben sich Forscher der Gruppe von Klaus Blaum vom Heidelberger Max-Planck-Institut für Kernphysik an ISOLDE/CERN in Zusammenarbeit mit Wissenschaftlern von sechs weiteren Forschungsinstitutionen am Beispiel der Kernmaterie näher beschäftigt.

Kernmaterie ist allein schon was ihre Dichte angeht exotisch. Diese ist so ungeheuer groß, dass ein Stück von der Größe eines Würfelzuckers eine Masse von 200 Milliarden kg hätte, was dem Wasserinhalt des Ederstausees entspricht. Dicht gepackt liegen hier die Kernbestandteile (Nukleonen), positiv geladene Protonen und elektrisch neutrale Neutronen, und es liegt nahe, den Kern wie ein Flüssigkeitströpfchen zu behandeln – so tat es bereits im Jahr 1935 Carl-Friedrich von Weizsäcker mit seiner Massenformel, welche die wichtigsten Eigenschaften der Kerne gut beschreibt (Abb. 1). Das Stichwort Masse liefert auch den experimentellen Zugang, den sich die Forscher um Klaus Blaum zunutze machen: Nach Einsteins berühmter Formel E = mc2 sind Energie und Masse äquivalent. Dies zeigt sich daran, dass ein Atomkern etwas leichter ist als all seine Nukleonen einzeln zusammen genommen. Dieser „Massendefekt“ entspricht gerade der Bindungsenergie des Kerns.

Hinzu kommen noch Effekte der Quantenphysik, denn ein Atomkern ist ein mikroskopisch kleines Objekt: 100.000mal kleiner als das Atom selbst, enthält aber 99,98% von dessen Masse. Die theoretische Beschreibung bedient sich hier der Quantenstatistik, also der Thermodynamik für Quantensysteme – seien es Quantengase (z. B. Bose-Einstein-Kondensate) oder Quantenflüssigkeiten (Suprafluidität) mit ganz neuen, der Alltagserfahrung fremden Eigenschaften. „Für einen bestimmten Bereich der Neutronenanzahl um das Element Yttrium zeigten frühere Messungen deutliche Hinweise auf einen Phasenübergang in der Kernmaterie und wir waren nun interessiert, wo die Grenzen für diesen Übergang liegen“, so Klaus Blaum. „Eine solche Grenze nennt man auch kritischen Punkt – für Wasser z. B. verschwindet oberhalb von 374°C der Unterschied zwischen flüssig und gasförmig.“ Die Phasenänderung ist mit einer Deformation des normalerweise kugelförmigen Kerns verbunden, was sich in einer schwächeren Bindung der Nukleonen (Abb. 2) und einer Vergrößerung des mittleren Kerndurchmessers äußert.

Zur Bestimmung der Bindungsenergie legen die Physiker die Atomkerne gleichsam auf die Waage, um so den Massendefekt mit hoher Präzision zu vermessen. Als ideale Waage hat sich dabei die Penningfallen-Massenspektrometrie erwiesen. Die zu untersuchenden Atomkerne wurden vom Isotopenseparator ISOLDE am CERN bereitgestellt und in der Penning-Ionenfalle ISOLTRAP zur Massenbestimmung eingefangen. „Eine experimentelle Herausforderung stellen die oft recht kurzen Halbwertszeiten der betrachteten Isotope dar, was derzeit noch die Messgenauigkeit einschränkt“, erläutert Klaus Blaum. Das Ergebnis für die Krypton-Isotope 96Kr und 97Kr, deren Masse erstmals bestimmt wurde, zeigt, dass hier im Gegensatz zur benachbarten Reihe der Rubidium-Isotope (Z=37) kein Phasenübergang mehr beobachtet wird (Abb. 1). Damit ist eine untere Grenze, gefunden, was die Abhängigkeit von der Kernladung angeht, und zugleich wird demonstriert, welches Potential die Penningfallen-Massenspektrometrie für die Erforschung von Kernmaterie bietet.

Beim nächsten Experiment wollen die Forscher eine andere Kerneigenschaft aufspüren: den Schalenabschluss bei der „magischen“ Neutronenzahl N=28 im Bereich der Kernmasse von Argon. Auch hier handelt es sich um einen Quanteneffekt, der über das einfache Tröpfchenmodell hinausgeht und durch eine erhöhte Bindungsenergie gekennzeichnet ist – ähnlich den Schalenabschlüssen in der Atomhülle bei Edelgasen, die sich chemisch sehr stabil verhalten.

Originalveröffentlichung:
S. Naimi, G. Audi, D. Beck, K. Blaum. Ch. Böhm, Ch. Borgmann, M. Breitenfeldt, S. George, F. Herfurth, A. Herlert, M. Kowalska, S. Kreim, D. Lunney, D. Neidherr, M. Rosenbusch, S. Schwarz, L. Schweikhard and K. Zuber
Critical-Point Boundary for the Nuclear Quantum Phase Transition Near A = 100 from Mass Measurements of 96,97Kr

Physical Review Letters, 105, 032502 (2010)

Kontakt:
Prof. Dr. Klaus Blaum
Max-Planck-Institut für Kernphysik, Heidelberg
Tel.: +49 6221 516-850
Fax: +49 6221 516-852
E-Mail: klaus.blaum@mpi-hd.mpg.de

Dr. Bernold Feuerstein | idw
Weitere Informationen:
http://link.aps.org/doi/10.1103/PhysRevLett.105.032502
http://www.mpi-hd.mpg.de/blaum/index.de.html
http://isoltrap.web.cern.ch/isoltrap/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften