Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kernmaterie am kritischen Punkt

28.07.2010
Mittels hochpräziser Messverfahren untersuchen Forscher des Max-Planck-Instituts für Kernphysik die Eigenschaften von Kernmaterie. Neueste Ergebnisse aus einem Experiment an ISOLDE/CERN für die Masse zweier Krypton-Isotope ergeben eine bessere Abgrenzung für Quanten-Phasenübergänge in Atomkernen.
[Physical Review Letters, 105, 032502 (2010)]

Fest – flüssig – gasförmig. Dies sind die uns aus dem Alltag vertrauten Aggregatzustände, in der Wissenschaft Phasen genannt. Sie sind von einander abgegrenzt und der Übergang von einer Phase zur anderen – Schmelzen, Verdampfen oder Sublimieren wie auch ihre Umkehrungen – ist durch Temperatur und Druck bestimmt.

So lehrt es die klassische Thermodynamik, die sehr allgemeine statistische Theorie für Systeme aus vielen wechselwirkenden Teilchen: im Alltagsbeispiel Atome oder Moleküle. Wie verhalten sich aber die Bestandteile von Atomen, die Elektronen und Kerne? Gibt es auch hier Aggregatzustände und Phasenübergänge und wovon hängen diese ab? Mit diesen Fragen haben sich Forscher der Gruppe von Klaus Blaum vom Heidelberger Max-Planck-Institut für Kernphysik an ISOLDE/CERN in Zusammenarbeit mit Wissenschaftlern von sechs weiteren Forschungsinstitutionen am Beispiel der Kernmaterie näher beschäftigt.

Kernmaterie ist allein schon was ihre Dichte angeht exotisch. Diese ist so ungeheuer groß, dass ein Stück von der Größe eines Würfelzuckers eine Masse von 200 Milliarden kg hätte, was dem Wasserinhalt des Ederstausees entspricht. Dicht gepackt liegen hier die Kernbestandteile (Nukleonen), positiv geladene Protonen und elektrisch neutrale Neutronen, und es liegt nahe, den Kern wie ein Flüssigkeitströpfchen zu behandeln – so tat es bereits im Jahr 1935 Carl-Friedrich von Weizsäcker mit seiner Massenformel, welche die wichtigsten Eigenschaften der Kerne gut beschreibt (Abb. 1). Das Stichwort Masse liefert auch den experimentellen Zugang, den sich die Forscher um Klaus Blaum zunutze machen: Nach Einsteins berühmter Formel E = mc2 sind Energie und Masse äquivalent. Dies zeigt sich daran, dass ein Atomkern etwas leichter ist als all seine Nukleonen einzeln zusammen genommen. Dieser „Massendefekt“ entspricht gerade der Bindungsenergie des Kerns.

Hinzu kommen noch Effekte der Quantenphysik, denn ein Atomkern ist ein mikroskopisch kleines Objekt: 100.000mal kleiner als das Atom selbst, enthält aber 99,98% von dessen Masse. Die theoretische Beschreibung bedient sich hier der Quantenstatistik, also der Thermodynamik für Quantensysteme – seien es Quantengase (z. B. Bose-Einstein-Kondensate) oder Quantenflüssigkeiten (Suprafluidität) mit ganz neuen, der Alltagserfahrung fremden Eigenschaften. „Für einen bestimmten Bereich der Neutronenanzahl um das Element Yttrium zeigten frühere Messungen deutliche Hinweise auf einen Phasenübergang in der Kernmaterie und wir waren nun interessiert, wo die Grenzen für diesen Übergang liegen“, so Klaus Blaum. „Eine solche Grenze nennt man auch kritischen Punkt – für Wasser z. B. verschwindet oberhalb von 374°C der Unterschied zwischen flüssig und gasförmig.“ Die Phasenänderung ist mit einer Deformation des normalerweise kugelförmigen Kerns verbunden, was sich in einer schwächeren Bindung der Nukleonen (Abb. 2) und einer Vergrößerung des mittleren Kerndurchmessers äußert.

Zur Bestimmung der Bindungsenergie legen die Physiker die Atomkerne gleichsam auf die Waage, um so den Massendefekt mit hoher Präzision zu vermessen. Als ideale Waage hat sich dabei die Penningfallen-Massenspektrometrie erwiesen. Die zu untersuchenden Atomkerne wurden vom Isotopenseparator ISOLDE am CERN bereitgestellt und in der Penning-Ionenfalle ISOLTRAP zur Massenbestimmung eingefangen. „Eine experimentelle Herausforderung stellen die oft recht kurzen Halbwertszeiten der betrachteten Isotope dar, was derzeit noch die Messgenauigkeit einschränkt“, erläutert Klaus Blaum. Das Ergebnis für die Krypton-Isotope 96Kr und 97Kr, deren Masse erstmals bestimmt wurde, zeigt, dass hier im Gegensatz zur benachbarten Reihe der Rubidium-Isotope (Z=37) kein Phasenübergang mehr beobachtet wird (Abb. 1). Damit ist eine untere Grenze, gefunden, was die Abhängigkeit von der Kernladung angeht, und zugleich wird demonstriert, welches Potential die Penningfallen-Massenspektrometrie für die Erforschung von Kernmaterie bietet.

Beim nächsten Experiment wollen die Forscher eine andere Kerneigenschaft aufspüren: den Schalenabschluss bei der „magischen“ Neutronenzahl N=28 im Bereich der Kernmasse von Argon. Auch hier handelt es sich um einen Quanteneffekt, der über das einfache Tröpfchenmodell hinausgeht und durch eine erhöhte Bindungsenergie gekennzeichnet ist – ähnlich den Schalenabschlüssen in der Atomhülle bei Edelgasen, die sich chemisch sehr stabil verhalten.

Originalveröffentlichung:
S. Naimi, G. Audi, D. Beck, K. Blaum. Ch. Böhm, Ch. Borgmann, M. Breitenfeldt, S. George, F. Herfurth, A. Herlert, M. Kowalska, S. Kreim, D. Lunney, D. Neidherr, M. Rosenbusch, S. Schwarz, L. Schweikhard and K. Zuber
Critical-Point Boundary for the Nuclear Quantum Phase Transition Near A = 100 from Mass Measurements of 96,97Kr

Physical Review Letters, 105, 032502 (2010)

Kontakt:
Prof. Dr. Klaus Blaum
Max-Planck-Institut für Kernphysik, Heidelberg
Tel.: +49 6221 516-850
Fax: +49 6221 516-852
E-Mail: klaus.blaum@mpi-hd.mpg.de

Dr. Bernold Feuerstein | idw
Weitere Informationen:
http://link.aps.org/doi/10.1103/PhysRevLett.105.032502
http://www.mpi-hd.mpg.de/blaum/index.de.html
http://isoltrap.web.cern.ch/isoltrap/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics