Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kepler-444 besitzt altes Planetensystem

28.01.2015

Weltraumteleskop findet fünf erdähnliche Himmelskörper, die einen Stern in der Leier umkreisen

Das älteste bisher bekannte Sonnensystem, das Planeten von erdähnlicher Größe enthält, haben Forscher unter Leitung der Universität Birmingham entdeckt. Gleich fünf solcher vergleichsweise kleinen Planeten umkreisen den Stern Kepler-444, dessen Geburt etwa 11,2 Milliarden Jahre zurückliegt.


Planetensystem bei einer fernen Sonne: Fünf Himmelskörper, deren Größen vergleichbar sind mit jener der Erde, umkreisen den Stern Kepler-444 in der Konstellation Leier. Mit 11,2 Milliarden Jahren ist das ferne System das älteste bekannte, das Planeten von erdähnlicher Größe enthält.

© Tiago Campante / Peter Devine

Der Fund beruht auf Messdaten des Weltraumteleskops Kepler. Offenbar haben lebensfreundliche Welten bereits früher im Universum existiert als bisher gedacht. Zu der Studie haben Forscher des Max-Planck-Instituts für Sonnensystemforschung und der Universität Göttingen maßgeblich beigetragen.

Das Planetensystem um den Stern Kepler-444 mutet wie eine weit entfernte Ausgabe unseres eigenen inneren Sonnensystems an – mit Merkur, Venus, Erde und Mars. Zwar kreisen dort im Sternbild Leier nicht vier, sondern fünf kleine Planeten um ihr Zentralgestirn; ihre Größen liegen jedoch alle zwischen denen von Merkur und Venus.

Die fünf Exoplaneten umrunden den Stern in weniger als zehn Tagen und dementsprechend in einem Abstand von weniger als einem Zehntel der Entfernung zwischen Erde und Sonne. Überraschend ist vor allem das Alter des neuentdeckten Planetensystems: 11,2 Milliarden Jahre – fast zweieinhalb Mal so alt wie unser Sonnensystem. Bisher ist kein anderes System vergleichbaren Alters bekannt, das Planeten von erdähnlicher Größe besitzt.

Für seine Auswertungen bediente sich das Team der Methoden der Asteroseismologie: Mithilfe des Weltraumteleskops Kepler beobachteten die Forscher die natürlichen Resonanzen des Sterns Kepler-444. Diese werden von Schallwellen erzeugt, die im Stern gefangen sind und ihn zum Schwingen bringen. „Die Schwingungen verursachen winzige Helligkeitsschwankungen im Licht, das der Stern ins All strahlt“, sagt Saskia Hekker vom Göttinger Max-Planck-Institut für Sonnensystemforschung. „Ihnen können wir Durchmesser, Masse und Alter des Sterns entnehmen.“

Die Exoplaneten wurden in einem zweiten Schritt aufgespürt. Wenn ein Exoplanet auf seiner Umlaufbahn aus Sicht des Weltraumteleskops vor seinem Stern vorüberzieht, verdeckt er ihn zum Teil und dämpft sein Licht. Daraus lässt sich das Größenverhältnis von Planet und Stern berechnen.

Über einen Zeitraum von vier Jahren richtete das Weltraumteleskop Kepler, das seit 2009 aus einer Umlaufbahn um die Sonne nach Exoplaneten sucht, immer wieder seinen Blick auf den nach ihm benannten Stern mit der Nummer 444. „Um die schwachen Schwingungen des Sterns und die winzigen Planeten aufzuspüren, waren lange und ununterbrochene Beobachtungszeiten notwendig“, sagt Timothy White von der Universität Göttingen.

„Die neue Entdeckung hat weitreichende Folgen für unser heutiges Bild des Universums“, meint Tiago Campante von der Universität Birmingham, der die Studie leitete. Sei doch jetzt bewiesen, dass während des Großteils der etwa 13,8 Milliarden Jahre währenden kosmischen Geschichte Planeten von erdähnlicher Größe entstanden sind. „Wir halten es deshalb für denkbar, dass auch in den frühen Phasen des Universums lebensfreundliche Welten existiert haben könnten“, sagt Hekker.


Ansprechpartner

Dr. Birgit Krummheuer
Presse- und Öffentlichkeitsarbeit

Max-Planck-Institut für Sonnensystemforschung, Göttingen
Telefon: +49 551 384979-462

E-Mail: krummheuer@mps.mpg.de

Dr. Saskia Hekker
Max-Planck-Institut für Sonnensystemforschung, Göttingen
Telefon: +49 551 384979-257

E-Mail: Hekker@mps.mpg.de


Dr. Timothy White
Institut für Astrophysik, Universität Göttingen
Telefon: +49 551 3913-811

E-Mail: twhite@astro.physik.uni-goettingen.de


Originalpublikation
T.L. Campante et al.

An ancient extrasolar system with five sub-Earth-size planets
Astrophysical Journal, 27 January 2015

Dr. Birgit Krummheuer | Max-Planck-Institut für Sonnensystemforschung, Göttingen
Weitere Informationen:
http://www.mpg.de/8914276/altes_sonnensystem

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics