Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Keine trüben Aussichten - Konstanzer Forscherteam beobachtet erstmalig Anderson-Lokalisierung

20.12.2012
Wellen können sich in einem ungeordneten Medium nicht ausbreiten, wenn zwischen zwei Störstellen weniger als eine Wellenlänge liegt.

Diese Feststellung machte der Physiker Philip W. Anderson im Jahr 1958. Bei der Erklärung vieler Phänomene in der Festkörperphysik hat diese Vorhersage eine wichtige Rolle gespielt, allerdings wurde die so genannte Anderson-Lokalisierung noch nie direkt beobachtet.

Forschern der Universität Konstanz und der Universität Zürich ist nun der Nachweis gelungen, dass die Ausbreitung von Licht in sehr stark streuenden Medien tatsächlich zum Erliegen kommt. Ihre Ergebnisse wurden im Wissenschaftsmagazin „Nature photonics“ publiziert.

Trübe Medien, wie beispielsweise Wolken, streuen Licht mehrfach, so dass es gleichmäßig in allen Richtungen und Farben aus dem Medium heraustritt. Aus diesem Grund erscheinen Wolken weiß. Das Licht breitet sich in diesem Fall durch die Wolke aus wie ein diffundierender Farbstoff in einer Flüssigkeit. Wenn nur Licht einer bestimmten Farbe oder Wellenlänge verwendet wird, treten Interferenzeffekte auf, die dazu führen, dass sich ein zufälliges Muster aus hellen und dunklen Flecken bildet. „Wenn diese Unordnung ein gewisses Maß erreicht, so dass weniger als eine Wellenlänge zwischen zwei Streuungen liegt, kann sich das Licht im Medium nicht mehr ausbreiten“, erklärt Prof. Dr. Georg Maret, Professor am Fachbereich Physik der Universität Konstanz. Dieser Zustand der ausgebremsten Lichtdiffusion wird nach ihrem Entdecker Philip W. Anderson als Anderson-Lokalisierung bezeichnet.

Bisher war es in der Forschung nicht möglich, die Anderson-Lokalisierung direkt zu beobachten. Physiker der Universität Konstanz und der Universität Zürich konnten jetzt in einem Experiment die Anderson-Lokalisierung von Licht erstmals eindeutig nachweisen. Wie aus ihrem im Wissenschaftsmagazin „Nature photonics“ publizierten Artikel hervorgeht, tritt die Anderson-Lokalisierung des Lichts erst bei sehr trüben Medien auf. Um die Ausbreitung des Lichts und damit die Anderson-Lokalisierung sichtbar zu machen, mussten Bilder in einem zeitlichen Abstand von weniger als einer Milliardstelsekunde gemacht werden. Finanziert wurde die Studie von der Deutschen Forschungsgemeinschaft (DFG), dem Center for Applied Photonics (CAP) der Universität Konstanz und dem Schweizerischen Nationalfonds.

Originalveröffentlichung:
T. Sperling, W. Bührer, C. M. Aegerter and G. Maret, Direct determination of the transition to localization of light in three dimensions, Nature Photonics (2012) doi:10.1038/nphoton.2012.313
Kontakt
Universität Konstanz
Kommunikation und Marketing
78457 Konstanz
Telefon: 07531 / 88-3603
Fax: 07531 / 88-3766
E-Mail: kum@uni-konstanz.de
Prof. Dr. Georg Maret
Universität Konstanz
Professur für Experimentalphysik
Telefon: 07531 / 88-4151
E-Mail: georg.maret@uni-konstanz.de

Julia Wandt | idw
Weitere Informationen:
http://www.uni-konstanz.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie