Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Keine trüben Aussichten - Konstanzer Forscherteam beobachtet erstmalig Anderson-Lokalisierung

20.12.2012
Wellen können sich in einem ungeordneten Medium nicht ausbreiten, wenn zwischen zwei Störstellen weniger als eine Wellenlänge liegt.

Diese Feststellung machte der Physiker Philip W. Anderson im Jahr 1958. Bei der Erklärung vieler Phänomene in der Festkörperphysik hat diese Vorhersage eine wichtige Rolle gespielt, allerdings wurde die so genannte Anderson-Lokalisierung noch nie direkt beobachtet.

Forschern der Universität Konstanz und der Universität Zürich ist nun der Nachweis gelungen, dass die Ausbreitung von Licht in sehr stark streuenden Medien tatsächlich zum Erliegen kommt. Ihre Ergebnisse wurden im Wissenschaftsmagazin „Nature photonics“ publiziert.

Trübe Medien, wie beispielsweise Wolken, streuen Licht mehrfach, so dass es gleichmäßig in allen Richtungen und Farben aus dem Medium heraustritt. Aus diesem Grund erscheinen Wolken weiß. Das Licht breitet sich in diesem Fall durch die Wolke aus wie ein diffundierender Farbstoff in einer Flüssigkeit. Wenn nur Licht einer bestimmten Farbe oder Wellenlänge verwendet wird, treten Interferenzeffekte auf, die dazu führen, dass sich ein zufälliges Muster aus hellen und dunklen Flecken bildet. „Wenn diese Unordnung ein gewisses Maß erreicht, so dass weniger als eine Wellenlänge zwischen zwei Streuungen liegt, kann sich das Licht im Medium nicht mehr ausbreiten“, erklärt Prof. Dr. Georg Maret, Professor am Fachbereich Physik der Universität Konstanz. Dieser Zustand der ausgebremsten Lichtdiffusion wird nach ihrem Entdecker Philip W. Anderson als Anderson-Lokalisierung bezeichnet.

Bisher war es in der Forschung nicht möglich, die Anderson-Lokalisierung direkt zu beobachten. Physiker der Universität Konstanz und der Universität Zürich konnten jetzt in einem Experiment die Anderson-Lokalisierung von Licht erstmals eindeutig nachweisen. Wie aus ihrem im Wissenschaftsmagazin „Nature photonics“ publizierten Artikel hervorgeht, tritt die Anderson-Lokalisierung des Lichts erst bei sehr trüben Medien auf. Um die Ausbreitung des Lichts und damit die Anderson-Lokalisierung sichtbar zu machen, mussten Bilder in einem zeitlichen Abstand von weniger als einer Milliardstelsekunde gemacht werden. Finanziert wurde die Studie von der Deutschen Forschungsgemeinschaft (DFG), dem Center for Applied Photonics (CAP) der Universität Konstanz und dem Schweizerischen Nationalfonds.

Originalveröffentlichung:
T. Sperling, W. Bührer, C. M. Aegerter and G. Maret, Direct determination of the transition to localization of light in three dimensions, Nature Photonics (2012) doi:10.1038/nphoton.2012.313
Kontakt
Universität Konstanz
Kommunikation und Marketing
78457 Konstanz
Telefon: 07531 / 88-3603
Fax: 07531 / 88-3766
E-Mail: kum@uni-konstanz.de
Prof. Dr. Georg Maret
Universität Konstanz
Professur für Experimentalphysik
Telefon: 07531 / 88-4151
E-Mail: georg.maret@uni-konstanz.de

Julia Wandt | idw
Weitere Informationen:
http://www.uni-konstanz.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Spin-Strom aus Wärme: Neues Material für höhere Effizienz
20.11.2017 | Universität Bielefeld

nachricht cw-Wert wie ein Lkw: FH Aachen testet Weihnachtsbaum im Windkanal
20.11.2017 | FH Aachen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

500 Kommunikatoren zu Gast in Braunschweig

20.11.2017 | Veranstaltungen

VDI-Expertenforum „Gefährdungsanalyse Trinkwasser"

20.11.2017 | Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Künstliche neuronale Netze: 5-Achs-Fräsbearbeitung lernt, sich selbst zu optimieren

20.11.2017 | Informationstechnologie

Tonmineral bewässert Erdmantel von innen

20.11.2017 | Geowissenschaften

Hemmung von microRNA-29 schützt vor Herzfibrosen

20.11.2017 | Biowissenschaften Chemie