Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kein Zusammenhang zwischen Dunkler Materie und massereichen Schwarzen Löchern in Galaxienkernen

20.01.2011
Massereiche schwarze Löcher gibt es im Zentrum fast aller Galaxien, wobei die größten Galaxien – die auch von den größten Halos aus Dunkler Materie umgeben sind – die schwersten schwarzen Löcher beherbergen.

Dies führte zu der Vermutung, dass es eine direkte Verbindung zwischen Dunkler Materie und schwarzen Löchern geben und dass somit die Physik exotischer Materie das Wachstum eines schwarzen Lochs bestimmen könnte.

Wissenschaftler am Max-Planck-Institut für extraterrestrische Physik, der Universitätssternwarte München und der Texas-Universität in Austin haben nun eine umfangreiche Studie an Galaxien durchgeführt um den Beweis zu erbringen, dass die Masse eines schwarzen Lochs nicht direkt mit der Masse des Halos aus Dunkler Materie zusammenhängt. Die Masse des schwarzen Lochs wird vielmehr durch die Entstehung des galaktischen Bulges bestimmt. Diese Ergebnisse werden am 20. Januar in der renommierten Zeitschrift Nature veröffentlicht.

Galaxien wie unsere Milchstraße bestehen aus Milliarden Sternen sowie gewaltigen Mengen an Gas und Staub. Diese Komponenten können bei unterschiedlichen Wellenlängen beobachtet werden, vom Radio- und Infrarotbereich für kühlere Gebiete bis hin zu optischen und Röntgenwellenlängen für Teile, die auf hohe Temperaturen aufgeheizt wurden. Es gibt noch zwei weitere wichtige Komponenten, die keinerlei Licht aussenden und sich nur durch ihre gravitative Wirkung bemerkbar machen.

Alle Galaxien sind einen Halo aus „Dunkler Materie“ eingebettet, der weit über die sichtbaren Ränder der Galaxie hinausreicht und den größten Teil ihrer Masse beiträgt. Auch wenn dieser Halo nicht direkt beobachtet werden kann, so kann er doch aufgrund seiner Wirkung auf die Bewegung der Sterne, Gas und Staub vermessen werden. Die Beschaffenheit der Dunklen Materie ist bislang unbekannt, allerdings denken die Wissenschaftler, dass sie aus exotischen Teilchen bestehen, die sich grundlegend von der normalen (baryonischen) Materie unterscheiden, aus der wir, die Erde, die Sonne und Sterne gemacht sind.

Der zweite unsichtbare Bestandteil einer Galaxie ist das extrem massereiche schwarze Loch in ihrem Innern. Im Zentrum unserer Milchstraße befindet sich ein schwarzes Loch, das etwa vier Millionen mal schwerer ist als die Sonne. Derartige Schwerkraftmonster, oder noch massereichere, konnten in allen leuchtkräftigen Galaxien mit zentralen Bulges nachgewiesen werden, bei denen eine direkte Suche möglich war; die Astronomen nehmen an, dass die meisten oder sogar alle Galaxien mit einem Bulge ein schwarzes Loch in ihrem Zentrum beherbergen. Auch diese Komponente der Galaxie kann aber nicht direkt beobachtet werden; die Masse des schwarzen Lochs ergibt sich aus der Bewegung der Sterne in seiner Umgebung.

Seit 2002 gibt es Spekulationen, dass eine enge Korrelation bestehen könnte zwischen der Masse des schwarzen Lochs und der äußeren Rotationsgeschwindigkeit in galaktischen Scheiben, die vom Dunklen Materiehalo bestimmt wird. Dies würde bedeuten, dass die unbekannte Physik der exotischen Dunklen Materie auf irgendeine Weise das Wachstum des schwarzen Lochs bestimmen würde. Andererseits wurde schon einige Jahre zuvor gezeigt, dass die Masse des schwarzen Lochs gut mit der Masse des Bulges oder der Leuchtkraft korreliert. Da größere Galaxien im allgemeinen auch größere Bulges besitzen, war nicht klar, welche dieser Korrelationen nun tatsächlich das Wachstum der schwarzen Löcher bestimmt.

Um diese Frage zu beantworten, untersuchten John Kormendy und Ralf Bender Galaxien, die in massereichen Halos aus Dunkler Materie eingebettet sind und damit hohe Rotationsgeschwindigkeiten aufweisen, die aber nur kleine oder gar keine Bulges haben. Dabei fanden sie heraus, dass Galaxien ohne Bulge – selbst wenn sie von massereichen Dunklen Materiehalos umgeben waren – im besten Fall schwarze Löcher sehr kleiner Masse enthielten. Die Forscher konnten damit zeigten, dass das Wachstum der schwarzen Löcher hauptsächlich mit der Entstehung eines Bulges und nicht mit der Dunklen Materie zusammenhängen.

„Man kann sich nur schwer vorstellen, wie eine über große Entfernungen dünn verteilte Dunkle Materie das Wachstum eines schwarzen Lochs in einem winzigen Raum tief im Innern einer Galaxie beeinflussen könnte“, sagt Ralf Bender vom Max-Planck-Institut für extraterrestrische Physik und der Universitätssternwarte München. John Kormendy von der Texas-Universität fügt hinzu: „Es ist weitaus plausibler, dass die schwarzen Löcher durch Gas aus ihrer Umgebung wachsen, insbesondere während der Entstehungsphase der Galaxien.“ Im allgemein anerkannten Bild der Strukturbildung im Universum werden die Scheiben von Galaxien durch häufige Verschmelzungen mit anderen Galaxien durcheinandergewirbelt, wodurch Gas ins Zentrum fallen kann. Dies löst zum einen eine erhöhte Sternentstehungsaktivität aus und führt dem schwarzen Loch zum anderen Material zu. Kormendys und Benders Beobachtungen deuten darauf hin, dass dies in der Tat der dominierende Prozess ist, der zur Entstehung und zum Wachstum schwarzer Löcher führt.

Originalveröffentlichung

John Kormendy & Ralf Bender, “Supermassive black holes do not correlate with dark matter halos of galaxies”, Nature, Nature, Vol. xxx, p. xxx, 20 January 2011

Kontakt
Dr. Ralf Bender
Max-Planck-Institut für extraterrestrische Physik
Tel: +49 89 30000-3702
Email: bender@mpe.mpg.de
Dr. Hannelore Hämmerle
Pressesprecherin
Max-Planck-Institut für extraterrestrische Physik
Tel: +49 89 30000-3980
Email: hanneh@mpe.mpg.de

Dr. Hannelore Hämmerle | Max-Planck-Institut
Weitere Informationen:
http://www.mpe.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen