Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kein Geheimnis mehr: die grundlegende Verknüpfung von Information und Wärme

13.03.2012
Physiker aus Augsburg, Lyon und Kaiserslautern zeigen in Nature die ultimative Grenze für numerisches Rechnen und irreversibles Löschen von Information.

In der jüngsten Ausgabe der renommierten Fachzeitschrift Nature zeigen Physiker aus Augsburg, Lyon und Kaiserslautern, wie sie das Landauer-Prinzip erstmals experimentell belegen konnten. Vor mehr als fünfzig Jahren formulierte Rolf Landauer von IBM die Hypothese, dass durch das Löschen von Information zwangsläufig eine minimale Energie in Form von Wärme an die Umgebung abgegeben wird und dass diese Wärme nach unten beschränkt ist.

Ihr Grenzwert wird durch die Menge der gelöschten Information und die Temperatur der Umgebung bestimmt. Durch diese Hypothese etablierte Landauer eine fundamentale Beziehung zwischen Informationstheorie und Thermodynamik. Mit ihrem Experiment bestätigen Dr. Eric Lutz (Universität Augsburg) und seine Kollegen nun Landauers Vorhersagen und beweisen, dass die untere Grenze, auf die die Wärme beschränkt ist, tatsächlich erreicht werden kann.

Die Verifikation des Landauer-Prinzips ist insoweit von großer Bedeutung, als durch sie die scheinbare Verletzung des zweiten Hauptsatzes der Thermodynamik durch den sogenannten Maxwellschen Dämon aufgehoben wird. Dieser Maxwellsche Dämon ist in der Lage, nach Beobachtung - also nach Informationsgewinn - kalte von warmen Molekülen in einer geteilten Kammer von einander zu trennen. Laut Maxwells Gedankenexperiment würde der Dämon mit Hilfe des bei diesem Informationsgewinn entstehenden Temperaturunterschieds Arbeit produzieren können, ohne dass er selbst Arbeit verrichtet. Dies freilich stünde im klaren Widerspruch zum zweiten Hauptsatz der Thermodynamik. Nach einem vollen Zyklus muss aber der Dämon die gewonnene Information wieder löschen und dabei Wärme dissipieren. Da gemäß dem Landauer-Prinzip die dissipierte Wärme immer größer als die gewonnene Arbeit ist, wird somit der zweite Hauptsatz nicht verletzt.

Die Ergebnisse der Forscher um Dr. Eric Lutz sind nicht nur von theoretischer, sondern auch von praktischer Relevanz. In der Computerindustrie geht aktuell der Trend zu immer kleineren Mikrochips. Die Wärmeproduktion in diesen immer kleiner werdenden Chips wird allerdings zu einem immer größeren Problem, da sie sowohl die Leistung von Rechnern einschränkt als auch deren weitere Miniaturisierung erschwert. Gegenwärtig liegt die dissipierte Wärme in silkonbasierten digitalen Schaltkreisen ungefähr tausendmal über der Landauer-Grenze. Es wird aber vorhergesagt, dass diese Grenze bereits in den nächsten zwanzig Jahren erreicht sein wird. Demnach werden auch Computeringenieure in Kürze mit der fundamentalen Grenze Landauers konfrontiert werden.

Im Experiment wurde von Lutz und seinen Kollegen eine Mikroglaskugel in einem Doppeltopfpotential, das mit fokussiertem Laserlicht erzeugt wird, eingefangen. Diese Versuchsanordnung entspricht dem einfachsten Zwei-Niveau-Speicher, in dem ein Bit Information gespeichert werden kann (Kugel rechts ist Zustand 0 und Kugel links Zustand 1). Die im System ursprünglich gespeicherte Information kann gelöscht werden, wenn eine Kugel kontrolliert in einen Topf gebracht wird. Bei diesem Prozess haben die Physiker die dissipierte Wärme gemessen. Dabei war zu beobachten, dass die dissipierte Wärme stets größer ist als die Landauer-Grenze und letztere erreicht wird, wenn der Löschvorgang der Information langsamer vollzogen wird.

Die Forschungsarbeiten, die zu diesen wegweisenden Ergebnissen führten, wurden von der Deutschen Forschungsgemeinschaft (DFG) im Rahmen des Emmy-Noether-Programms und und des SFB/Transregio 49 sowie durch das Exzellenzcluster Nanosystems Initiative Munich (NIM) und durch den Deutschen Akademischen Austauschdienst (DAAD) unterstützt.

Originalbeitrag:

Experimental verification of Landauer’s principle linking information and thermodynamics. Antoine Bérut, Artak Arakelyan, Artyom Petrosyan, Sergio Ciliberto, Raoul Dillenschneider & Eric Lutz. Nature 483, 187–189. http://www.nature.com/nature/journal/v483/n7388/full/nature10872.html

Ansprechpartner:

Dr. Eric Lutz
Institut für Physik der Universität Augsburg
86135 Augsburg
Telefon +49(0)821-598-3218 oder +49(0)30-838-53038
Eric.Lutz@physik.uni-augsburg.de

Klaus P. Prem | idw
Weitere Informationen:
http://www.uni-augsburg.de
http://www.physik.uni-augsburg.de/%7Elutzeric/
http://www.nature.com/nature/journal/v483/n7388/full/nature10872.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher verwandeln Diamant in Graphit
24.11.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Proton-Rekord: Magnetisches Moment mit höchster Genauigkeit gemessen
24.11.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Metamaterial mit Dreheffekt

Mit 3D-Druckern für den Mikrobereich ist es Forschern des Karlsruher Instituts für Technologie (KIT) gelungen ein Metamaterial aus würfelförmigen Bausteinen zu schaffen, das auf Druckkräfte mit einer Rotation antwortet. Üblicherweise gelingt dies nur mit Hilfe einer Übersetzung wie zum Beispiel einer Kurbelwelle. Das ausgeklügelte Design aus Streben und Ringstrukturen, sowie die zu Grunde liegende Mathematik stellen die Wissenschaftler in der aktuellen Ausgabe der renommierten Fachzeitschrift Science vor.

„Übt man Kraft von oben auf einen Materialblock aus, dann deformiert sich dieser in unterschiedlicher Weise. Er kann sich ausbuchten, zusammenstauchen oder...

Im Focus: Proton-Rekord: Magnetisches Moment mit höchster Genauigkeit gemessen

Hochpräzise Messung des g-Faktors elf Mal genauer als bisher – Ergebnisse zeigen große Übereinstimmung zwischen Protonen und Antiprotonen

Das magnetische Moment eines einzelnen Protons ist unvorstellbar klein, aber es kann dennoch gemessen werden. Vor über zehn Jahren wurde für diese Messung der...

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Forschungsschwerpunkt „Smarte Systeme für Mensch und Maschine“ gegründet

24.11.2017 | Veranstaltungen

Schonender Hüftgelenkersatz bei jungen Patienten - Schlüssellochchirurgie und weniger Abrieb

24.11.2017 | Veranstaltungen

Kinderanästhesie aktuell: Symposium für Ärzte und Pflegekräfte

23.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Treibjagd in der Petrischale

24.11.2017 | Biowissenschaften Chemie

Riesen-Drehmomentsensor aus der PTB bringt Präzision vom Labor in den Prüfstand

24.11.2017 | Energie und Elektrotechnik

Projekt RadVerS – Welcher Radfahrtyp sind Sie?

24.11.2017 | Verkehr Logistik