Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kasseler Physiker entwickeln Plattform mit Diamantbeschichtung für die Erforschung von Nervenzellen

07.05.2014

Am Institut für Nanostrukturtechnologie und Analytik (INA) der Universität Kassel sind Forscher mit der Entwicklung einer neuen Mikroelektrodenplattform mit Diamantoberfläche beschäftigt. Diese soll bei Experimenten im Labor eine Untersuchung der Netzwerkbildung von Nervenzellen über mehrere Tage hinweg ermöglichen, ohne die Zellen zu beschädigen oder sie Stress auszusetzen.

Das langfristige Ziel der Forschungsarbeiten ist die Entwicklung eines leistungsfähigen Instruments für den Einsatz in der Hirnforschung. Die neue Trägerstruktur mit ihren besonderen Materialeigenschaften könnte die Erforschung neuronaler Netzwerkorganisationen in Zukunft bedeutend voranbringen und kann damit letztlich auch der Bekämpfung degenerativer Erkrankungen des Gehirns dienen.


PD Dr. Cyril Popov vor der Anlage für die Abscheidung von Diamantschichten.

Foto: Universität Kassel

Die diamantbasierte Mikroelektrodenplatte wird von Dr. Cyril Popov, wissenschaftlicher Assistent im Fachgebiet Technische Physik der Universität Kassel, und Doktorandin Alexandra Voss, entwickelt und in Kooperation mit der Arbeitsgruppe Tierphysiologie, Leitung Prof. Monika Stengl, an Modellorganismen erprobt. Nach einer Startfinanzierung durch die Zentrale Forschungsförderung der Universität Kassel konnte erfolgreich ein Projekt bei der Deutschen Forschungsgemeinschaft (DFG) beantragt werden.

Dieses Projekt ist auf drei Jahre angelegt und umfasst eine Förderung von 192.000 Euro. Sowohl das Center for Interdisciplinary Nanostructure Science and Technology (CINSaT) der Universität Kassel als auch das Joint Research Center der Europäischen Kommission unterstützen die Arbeit.

Um Nervenzellen (Neuronen) in Netzwerken zu erforschen, wird ihre elektrische Aktivität und die Kommunikation untereinander beobachtet. Dies geschieht mit Hilfe kleiner Elektroden, die in so genannten Mikroelektroden-Anordnungen eingelassen sind. Auf diesen Mikroelektrodenplatten werden die zu untersuchenden Nervenzellen aufgetragen, jede soll sich anschließend auf einer Elektrode befinden.

Eines der großen Probleme dabei: Mögen Zellen die verwendeten Materialien nicht, wandern sie weg oder sterben. Zudem kann eine geringe Haftung zwischen Nervenzelle und Untergrund die Messung stören. Daher ist es bislang schwierig, viele Nervenzellen gleichzeitig über einen längeren Zeitraum bei der Netzwerkbildung zu beobachten.

Die neue Trägerplattform der Kasseler Physiker funktioniert im Prinzip genauso wie bereits existierende Mikroelektrodenplatten. Neu ist aber, dass ein dünner Diamantfilm als Isolationsschicht dient: „Neuronen mögen Diamantoberflächen“, erklärt Dr. Popov. Die spezielle Nanostruktur der Diamantschicht böte den Zellen mehr Oberfläche, an die sie sich binden könnten.

Außerdem sei Diamant nicht toxisch und es können sich keine Stoffe lösen und die Zelle beschädigen, erklären die Forscher. Zu erforschen, wie die Oberflächenchemie durch plasma- oder photochemische Behandlung verändert werden kann, ist Teil des Projektes. Dieses Wissen könnte für die Positionssteuerung der Zellen genutzt werden.

Zudem ist Diamant mechanisch und chemisch sehr beständig, sodass die Platten länger haltbar und häufiger wiederverwendbar sein werden, als die bisherigen Plattformen. Bei dem verwendeten Diamant handelt es sich um ein Verbundmaterial aus ultrananokristallinem Diamant und amorphem Kohlenstoff.

Als Modellkulturen für die Tests der Mikroelektrodenplatten werden Zellen verwendet, die ohne Einwirkung von Außen elektrische Signale erzeugen. Dazu dienen den Forschern Schrittmacherneuronen von der Schabe Rhypharobia maderae. Diese werden in der Abteilung Tierphysiologie der Universität Kassel gewonnen.

Sollte sich die diamantbasierte Mikroelektrodenplatte in der Erprobung mit den Modellorganismen bewähren, könnte das neue Verfahren in Zukunft auch in anderen Gebieten der Medizintechnik Anwendung finden und bei der Bekämpfung neuronaler Erkrankungen wie Parkinson und Alzheimer eingesetzt werden. 

Kontakt:
Priv.-Doz. Dr. Cyril Popov
Universität Kassel
Institut für Nanostrukturtechnologie und Analytik
Heinrich-Plett-Str. 40
34132 Kassel
Tel.: +49 (0)561/804- 4205
E-Mail: popov@ina.uni-kassel.de

Andrea Haferburg | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-kassel.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall
22.08.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten
21.08.2017 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer IPM präsentiert »Deep Learning Framework« zur automatisierten Interpretation von 3D-Daten

22.08.2017 | Informationstechnologie

Globale Klimaextreme nach Vulkanausbrüchen

22.08.2017 | Geowissenschaften

RWI/ISL-Containerumschlag-Index erreicht neuen Höchstwert

22.08.2017 | Wirtschaft Finanzen