Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kasseler Physiker entwickeln Plattform mit Diamantbeschichtung für die Erforschung von Nervenzellen

07.05.2014

Am Institut für Nanostrukturtechnologie und Analytik (INA) der Universität Kassel sind Forscher mit der Entwicklung einer neuen Mikroelektrodenplattform mit Diamantoberfläche beschäftigt. Diese soll bei Experimenten im Labor eine Untersuchung der Netzwerkbildung von Nervenzellen über mehrere Tage hinweg ermöglichen, ohne die Zellen zu beschädigen oder sie Stress auszusetzen.

Das langfristige Ziel der Forschungsarbeiten ist die Entwicklung eines leistungsfähigen Instruments für den Einsatz in der Hirnforschung. Die neue Trägerstruktur mit ihren besonderen Materialeigenschaften könnte die Erforschung neuronaler Netzwerkorganisationen in Zukunft bedeutend voranbringen und kann damit letztlich auch der Bekämpfung degenerativer Erkrankungen des Gehirns dienen.


PD Dr. Cyril Popov vor der Anlage für die Abscheidung von Diamantschichten.

Foto: Universität Kassel

Die diamantbasierte Mikroelektrodenplatte wird von Dr. Cyril Popov, wissenschaftlicher Assistent im Fachgebiet Technische Physik der Universität Kassel, und Doktorandin Alexandra Voss, entwickelt und in Kooperation mit der Arbeitsgruppe Tierphysiologie, Leitung Prof. Monika Stengl, an Modellorganismen erprobt. Nach einer Startfinanzierung durch die Zentrale Forschungsförderung der Universität Kassel konnte erfolgreich ein Projekt bei der Deutschen Forschungsgemeinschaft (DFG) beantragt werden.

Dieses Projekt ist auf drei Jahre angelegt und umfasst eine Förderung von 192.000 Euro. Sowohl das Center for Interdisciplinary Nanostructure Science and Technology (CINSaT) der Universität Kassel als auch das Joint Research Center der Europäischen Kommission unterstützen die Arbeit.

Um Nervenzellen (Neuronen) in Netzwerken zu erforschen, wird ihre elektrische Aktivität und die Kommunikation untereinander beobachtet. Dies geschieht mit Hilfe kleiner Elektroden, die in so genannten Mikroelektroden-Anordnungen eingelassen sind. Auf diesen Mikroelektrodenplatten werden die zu untersuchenden Nervenzellen aufgetragen, jede soll sich anschließend auf einer Elektrode befinden.

Eines der großen Probleme dabei: Mögen Zellen die verwendeten Materialien nicht, wandern sie weg oder sterben. Zudem kann eine geringe Haftung zwischen Nervenzelle und Untergrund die Messung stören. Daher ist es bislang schwierig, viele Nervenzellen gleichzeitig über einen längeren Zeitraum bei der Netzwerkbildung zu beobachten.

Die neue Trägerplattform der Kasseler Physiker funktioniert im Prinzip genauso wie bereits existierende Mikroelektrodenplatten. Neu ist aber, dass ein dünner Diamantfilm als Isolationsschicht dient: „Neuronen mögen Diamantoberflächen“, erklärt Dr. Popov. Die spezielle Nanostruktur der Diamantschicht böte den Zellen mehr Oberfläche, an die sie sich binden könnten.

Außerdem sei Diamant nicht toxisch und es können sich keine Stoffe lösen und die Zelle beschädigen, erklären die Forscher. Zu erforschen, wie die Oberflächenchemie durch plasma- oder photochemische Behandlung verändert werden kann, ist Teil des Projektes. Dieses Wissen könnte für die Positionssteuerung der Zellen genutzt werden.

Zudem ist Diamant mechanisch und chemisch sehr beständig, sodass die Platten länger haltbar und häufiger wiederverwendbar sein werden, als die bisherigen Plattformen. Bei dem verwendeten Diamant handelt es sich um ein Verbundmaterial aus ultrananokristallinem Diamant und amorphem Kohlenstoff.

Als Modellkulturen für die Tests der Mikroelektrodenplatten werden Zellen verwendet, die ohne Einwirkung von Außen elektrische Signale erzeugen. Dazu dienen den Forschern Schrittmacherneuronen von der Schabe Rhypharobia maderae. Diese werden in der Abteilung Tierphysiologie der Universität Kassel gewonnen.

Sollte sich die diamantbasierte Mikroelektrodenplatte in der Erprobung mit den Modellorganismen bewähren, könnte das neue Verfahren in Zukunft auch in anderen Gebieten der Medizintechnik Anwendung finden und bei der Bekämpfung neuronaler Erkrankungen wie Parkinson und Alzheimer eingesetzt werden. 

Kontakt:
Priv.-Doz. Dr. Cyril Popov
Universität Kassel
Institut für Nanostrukturtechnologie und Analytik
Heinrich-Plett-Str. 40
34132 Kassel
Tel.: +49 (0)561/804- 4205
E-Mail: popov@ina.uni-kassel.de

Andrea Haferburg | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-kassel.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen