Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kasseler Physiker entwickeln neue Methode zur Erkennung chiraler Moleküle

29.02.2012
Physikern der Uni Kassel ist es erstmals mit Hilfe von Laserpulsen gelungen, chirale Moleküle mit hoher Empfindlichkeit nachzuweisen.

Die neue Technik besitzt ein erhebliches Anwendungspotenzial in der Chemie- und Pharmaforschung.

Forscher des Fachgebiets Experimentalphysik III – Femtosekundenspektroskopie und ultraschnelle Laserkontrolle - unter der Leitung von Prof. Dr. Thomas Baumert und Prof. Dr. Matthias Wollenhaupt konnten in einem nur tischgroßen Laserexperiment Effekte im Bereich von zehn Prozent für Moleküle mit unterschiedlicher Chiralität demonstrieren. Die durchgeführten Experimente waren derart empfindlich, dass bereits an hochverdünnten Molekülen eindeutige Messsignale beobachtet werden konnten.

Da diese Signale mit Hilfe von Laserpulsen der Dauer einiger Billardstelsekunden aufgenommen wurden, ist diese Messung im Prinzip auch ultraschnell. Ähnliche Empfindlichkeiten konnten bislang nur mittels Synchrotronstrahlung an Großforschungsanlagen erzielt werden.

Die linke Hand von der rechten zu unterscheiden ist ein Kinderspiel. Linkshändige Moleküle von rechtshändigen zu unterscheiden ist dagegen eine wissenschaftliche Herausforderung, die umso größer wird, je weniger Moleküle zur Verfügung stehen. Dabei ist Chiralität („Händigkeit“) von zentraler Bedeutung in der Natur. Denn wie Moleküle reagieren, wie sie riechen, schmecken oder wirken, hängt nicht nur von ihrer chemischen Zusammensetzung, sondern häufig auch von ihrer räumlichen Anordnung ab.

Während natürlich vorkommende Moleküle meist nur in einer – links- oder rechtshändigen - Variante bekannt sind, treten bei synthetisch erzeugten Molekülen des gleichen Stoffs oft zwei spiegelbildlich ausgerichtete Varianten auf. Diese beiden Molekülvarianten („Enantiomere“) haben oft sehr unterschiedliche Eigenschaften, was vor allem bei Medikamenten schwer wiegende Konsequenzen haben kann. Während das eine Enantiomer heilend wirkt, kann das andere unwirksam oder für den Menschen sogar schädlich sein. Bei Medikamenten, die auf chiralen Molekülen basieren, hat die chemische Analytik daher eine enorm hohe Bedeutung für die Sicherheit und zuverlässige Wirkungsweise.

Mit Hilfe von energiereichen Lichtstrahlen, die nur in Großforschungsanlagen zur Verfügung stehen, gelingt eine derartige Unterscheidung an geringsten Mengen unregelmäßig ausgerichteter Moleküle in der Gasphase erst seit wenigen Jahren. Als Unterscheidungsmerkmal werden die durch die Lichtstrahlen ausgelösten Elektronen herangezogen. Für eine bestimmte Zirkularität des Lichts und eine bestimmte Chiralität des Moleküls verlassen die Elektronen das Molekül beispielsweise in Richtung des Lichtstrahls. Trifft der Lichtstrahl auf Moleküle mit abweichender Chiralität, so dreht sich die Richtung der Elektronen um. Sie fliegen nun überwiegend entgegen der Richtung des Lichtstrahls.

Ein mechanisches Modell kann diesen Sachverhalt veranschaulichen: Versetzt man die Mutter auf einer Schraube rechtsherum in Drehung, so wird sich die Mutter immer in die gleiche Richtung bewegen, egal ob die Schraubenspitze auf den Beobachter zu- oder von ihm weg zeigt. In diesem Beispiel entspricht die Mutter dem Elektron, die Schraube dem Molekül mit einer bestimmten Chiralität und die Rechtsdrehung der Zirkularität des Lichts. Die Richtung der Schraube stellt zwei Extremfälle der unregelmäßig ausgerichteten Moleküle dar. Dieser Vergleich stammt von dem englischen Forscher Ivan Powis, der solche Untersuchungen an Großforschungsanlagen durchgeführt hat.

Für eine Routineanalytik stehen Großforschungsanlagen allerdings nicht zur Verfügung. Hier setzen nun die Arbeiten von Christian Lux, Matthias Wollenhaupt, Tom Bolze, Qingqing Liang, Jens Köhler, Christian Sarpe und Thomas Baumert ein. Das Team setzte ihre energiearmen - aber dafür intensiven - Laserpulse aus dem Labor ein. Im Unterschied zu den Experimenten an einer Großforschungsanlage werden jetzt mehrere Photonen zum Auslösen der Elektronen verwendet. Die Richtungsverteilung der ausgelösten Elektronen wird dadurch weiter verfeinert. Aufgrund der Handlichkeit des Laboraufbaus und wegen der beachtlichen Größe der beobachteten Effekte eröffnet dieser Ansatz einen wichtigen Zugang zu einer neuartigen Analytik. Weil die Laserpulse im Labor zudem auch noch auf Zeitskalen der Bewegung der Elektronen und Kerne der Moleküle maßgeschneidert werden können, erhoffen sich die Forscher auch neue grundlegende Erkenntnisse über die Wechselwirkung chiraler Moleküle in Lichtfeldern.

Die Arbeiten der Kassler Forscher werden in der 20. Ausgabe 2012 der international renommierten Zeitschrift Angewandte Chemie im Druck erscheinen und wurden am 20. Februar 2012 online gestellt (DOI: 10.1002/anie.201109035). Die Gutachter der Zeitschrift zeichneten den Beitrag mit dem "VIP" Status (VIP = very important paper) aus.

Info
Prof. Dr. Thomas Baumert
Universität Kassel
Institut für Physik
Tel.: 0561/804-4452
E-Mail: baumert@physik.uni-kassel.de

Dr. Guido Rijkhoek | idw
Weitere Informationen:
http://www.uni-kassel.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie