Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kamera für den Nanokosmos

10.08.2015

Um immer noch tiefer in die Welt des Allerkleinsten vordringen zu können, müssen die Grenzen der Mikroskopie weiter verschoben werden.

Wissenschaftlern des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) und der TU Dresden ist es nun in Zusammenarbeit mit der FU Berlin erstmalig gelungen, zwei etablierte Untersuchungsmethoden – die Nahfeld-Mikroskopie und die Ultrakurzzeit-Spektroskopie – zu verbinden. Eine eigens entwickelte, computergestützte Technik kombiniert die Vorteile der beiden Verfahren und unterdrückt zudem unerwünschtes Rauschen. Damit werden hochgenaue Filme von Vorgängen im Nanometer-Bereich möglich (DOI: 10.1038/srep12582).


Die hellen Streifen auf einer bekannten Dünnschicht-Probe aus Silizium und Germanium werden mit Laserlicht angeregt. Genau dort wird die ansonsten durchsichtige Probe reflexiv.

TU Dresden

Viele wichtige Prozesse in den Natur- und Lebenswissenschaften sind auch heute noch nicht verstanden. Man denke etwa an die Photosynthese oder an die Hochtemperatur-Supraleitung, die dafür sorgt, dass bestimmte Materialien auch bei relativ hohen Temperaturen verlustfrei Strom leiten können.

Dies liegt zum einen daran, dass solche Vorgänge auf einer Skala von millionstel Millimetern (Nanometern) stattfinden und sich deshalb der konventionellen, optisch-mikroskopischen Abbildung entziehen. Zum anderen müssen Forscher die meist sehr schnellen Veränderungen in einzelnen Schritten genau beobachten können, um die hochkomplexen Abläufe besser zu verstehen. Die Entwicklung zeitlich und räumlich hochauflösender Techniken wird daher seit Jahrzehnten weltweit vorangetrieben.

Die neuartige Kamera aus Dresden verbindet die Vorteile aus zwei Welten: der Mikroskopie und der Spektroskopie. Sie ermöglicht unverfälschte optische Messungen extrem kleiner, dynamischer Änderungen von biologischen, chemischen oder physikalischen Prozessen. Zudem ist das Instrument sehr kompakt und kann für die spektroskopischen Untersuchungen einen großen Teil des elektromagnetischen Spektrums nutzen.

Für die einzelnen Bilder können Zeitschritte von wenigen Billiardstel Sekunden (Femtosekunden) bis hin zu Sekunden gewählt werden. „Damit ist unser Nanoskop für die Darstellung ultraschneller physikalischer Prozesse ebenso geeignet wie für biologische Prozesse, die oft sehr langsam verlaufen“, freut sich Dr. Michael Gensch vom HZDR.

Kombination zweier Methoden garantiert hohe räumliche und zeitliche Auflösung

Das Nanoskop basiert auf einer Weiterentwicklung der Nahfeld-Mikroskopie, bei der Laserlicht auf eine hauchdünne Metallspitze eingestrahlt wird. Diese bündelt das Licht sehr stark – und zwar hundertfach kleiner als die Lichtwellenlänge, welche sonst die Grenze in der „normalen“ Optik mit Linsen und Spiegeln darstellt. „Wir können im Prinzip das gesamte Wellenlängen-Spektrum der Nahfeld-Mikroskopie vom ultravioletten bis in den Terahertz-Bereich verwenden“, so Dr. Susanne Kehr von der TU Dresden.

„Das gebündelte Licht gibt Energie an die Probe ab und es kommt zu einer besonderen Wechselwirkung zwischen Spitze und Probe im sogenannten Nahfeld. Beobachtet man den zurückgestreuten Anteil des Laserlichtes, erzielt man eine räumliche Auflösung in der Größenordnung des Nahfelds, also im Nanometer-Bereich.“ Typischerweise wird diese mit dem Fachbegriff SNOM (Scanning Near-field Optical Microscopy) benannte Technik nur zur Abbildung statischer Zustände eingesetzt.

Bei der Ultrakurzzeit-Spektroskopie dagegen handelt es sich um das entscheidende Werkzeug, mit dem Forscher dynamische Prozesse auf sehr kurzen Zeitskalen und mit extrem hoher Empfindlichkeit studieren können. Allerdings war die räumliche Auflösung bisher auf den Mikrometerbereich beschränkt. Das Prinzip solcher Anregungs-Abfrage-Experimente, die beispielsweise mit Licht-, Druck- oder Spannungspulsen funktionieren: Während ein erster Puls die zu untersuchende Probe anregt, fragt ein zweiter Puls die Änderung in der Probe ab.

Wird die Zeit dazwischen variiert, können Momentaufnahmen zu unterschiedlichen Zeiten gemacht werden und ein Film entsteht. Dabei sorgt eine ausgeklügelte Korrektur von Messfehlern für die hohe Empfindlichkeit des spektroskopischen Verfahrens. So bedeutet die Aktivierung durch den Anregungspuls für das gesamte Proben-System eine Art Störung, die es herauszufiltern gilt, um das Rauschen bzw. den „Untergrund“ zu eliminieren. Dies geschieht, indem direkt vor dem ersten Puls ein Referenzpuls die noch ungestörte Probe abtastet. Genau diese Technik war bislang nicht mit der Nahfeld-Mikroskopie kombinierbar. Den Teams um die beiden Dresdner Physiker ist es damit erstmalig gelungen, alle Vorteile der beiden Methoden in ihrem Nanoskop zu vereinen.

„Wir haben eine Software mit einer besonderen Demodulationstechnik entwickelt, mit der wir neben der hervorragenden Auflösung der Nahfeld-Mikroskopie, die um mindestens drei Größenordnungen besser ist als die der Ultrakurzzeit-Spektroskopie, nun auch dynamische Änderungen in der Probe mit hoher Empfindlichkeit messen können“, erklärt Kehr. Das trickreiche elektronische Verfahren versetzt das Nanoskop in die Lage, ausschließlich die tatsächlich auftretenden Änderungen in den Probeneigenschaften aufzunehmen. Erst vor kurzem hatten auch andere Forschergruppen über eine gute Zeitauflösung ihrer Nanoskope berichtet, den wichtigen Korrekturmodus konnten sie jedoch nicht realisieren. Ein weiterer Vorteil der Dresdner Lösung: Sie lässt sich leicht in bereits bestehende Nahfeld-Mikroskope integrieren.

Universell in jeglicher Hinsicht

„Durch den großen Wellenlängen-Bereich unseres Nanoskops können dynamische Prozesse mit den für die konkrete Messung am besten geeigneten Wellenlängen untersucht werden, was ein wichtiger Schritt zu deren Verständnis ist. So haben unsere Kollegen von der FU Berlin den ehrgeizigen Traum, die strukturellen Änderungen während des Photozyklus eines einzelnen Membranproteins im infraroten Spektralbereich zu verfolgen“, sagt Gensch. Gemeinsam mit seiner TU-Kollegin Susanne Kehr hat er die neue Methode zunächst an einem bekannten Proben-System, einer halbleitenden Schicht aus Silizium und Germanium, demonstriert. „Hätten wir eine unbekannte Probe als Demonstrator genutzt, wären wir nicht in der Lage gewesen, die Funktionalität unseres Ansatzes richtig zu interpretieren“, betont Kehr.

Das Nanoskop aus Dresden ist universell an die jeweiligen wissenschaftlichen Fragestellungen adaptierbar. Die Wellenlängen der Abfragepulse können prinzipiell vom tiefen Terahertz-Bereich bis in den ultravioletten Bereich reichen. Die Probe kann mit Laser-, Druck-, Spannungs- oder Magnetfeld-Pulsen angeregt werden. Am HZDR wurde das Prinzip an einem typischen Laborlaser getestet sowie am Freie-Elektronen-Laser FELBE. Erste Versuche an der neuen Terahertz-Quelle TELBE, die extrem kurze Spannungs- und Magnetfeld-Pulse zur Anregung zur Verfügung stellt, sind in Vorbereitung. „Zukünftig können wir dann nicht nur sehen, wie schnell ein Prozess abläuft, sondern auch besser lokalisieren, wo genau in der Probe er stattfindet. Das ist insbesondere für unsere TELBE-Anlage, die im nächsten Jahr in Betrieb gehen wird, von großer Bedeutung“, erläutert Michael Gensch, Leiter des TELBE-Projekts am HZDR.

Publikation: F. Kuschewski, S.C. Kehr, B. Green, Ch. Bauer, M. Gensch & L.M. Eng: Optical nanoscopy of transient states in condensed matter, in: Scientific Reports 5, 12582, Online-Publikation am 28.07.2015 (DOI-Link: http://www.nature.com/srep/2015/150728/srep12582/metrics)

Weitere Informationen:
Dr. Michael Gensch
Institut für Strahlenphysik und Institut für Ionenstrahlphysik und Materialforschung am HZDR
Tel. +49 (351) 260 2464 | E-Mail m.gensch@hzdr.de

Dr. Susanne Kehr (bis 21.08.2015 im Urlaub)
Institut für Angewandte Physik an der TU Dresden
Tel. +49 (351) 463 32711 | E-Mail susanne.kehr@iapp.de

Medienkontakte:
Dr. Christine Bohnet | Leiterin Kommunikation, Pressesprecherin
Tel. +49 (351) 260 2450 | E-Mail c.bohnet@hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf (HZDR)
Bautzner Landstr. 400 | 01328 Dresden
www.hzdr.de

Kim-Astrid Magister | Pressesprecherin
Tel. +49 (351) 463 32398 | Fax +49 (351) 463 37165
E-Mail Pressestelle@tu-dresden.de
Technische Universität Dresden, 01062 Dresden
http://www.tu-dresden.de

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
Das HZDR ist Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Es hat vier Standorte (Dresden, Leipzig, Freiberg, Grenoble) und beschäftigt rund 1.100 Mitarbeiter – davon etwa 500 Wissenschaftler inklusive 150 Doktoranden.

Weitere Informationen:

http://www.hzdr.de

Dr. Christine Bohnet | Helmholtz-Zentrum Dresden-Rossendorf

Weitere Berichte zu: Energie HZDR Helmholtz-Zentrum Materie Nanokosmos Nanoskop Terahertz-Bereich

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern
15.09.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik