Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kalte Moleküle für die Quantentechnologie: TU Graz erschließt neue Molekülklasse

29.10.2014

Physiker der TU Graz haben eine neue Molekülklasse erschlossen: Erstmals konnte das Molekül RbSr experimentell mittels suprakalter Heliumnanotröpfchen aus Rubidium- und Strontiumatomen hergestellt werden. Dies markiert einen wesentlichen Fortschritt in der ultrakalten Molekülphysik nahe dem absoluten Nullpunkt und erweitert die Möglichkeiten der Informationsverarbeitung mittels Quantentechnologie. Das Forschungsergebnis wurde in der aktuellen Ausgabe des renommierten Fachjournals „Physical Review Letters“ publiziert

Quantentechnologien machen sich die quantenmechanischen Eigenschaften von Materiebausteinen und Licht zu Nutze. In der Welt der Atome wird Energie nicht in beliebiger Menge ausgetauscht, sondern nur in „Energiepaketen“ gewisser Größe, sogenannten Quanten.

Im Vergleich zu Atomen stehen Molekülen sehr viel mehr Möglichkeiten offen, Energiepakete unterschiedlicher Größe aufzunehmen oder abzugeben. Sie besitzen mehr „Energiefreiheitsgrade“, und können noch dazu elektrische und magnetische Dipolmomente besitzen, die gewisse Manipulationen erlauben.

Zusätzlich zu den Quanteneigenschaften der einzelnen Teilchen kommt ein besonderer Aspekt zum Tragen, wenn die Teilchen auf sehr niedrige Temperaturen gekühlt werden, und aus einer klassischen Wolke von Atomen oder Molekülen ein Quantengas wird.

Was sind Quantengase?

Die Erzeugung von atomaren Quantengasen hat in den vergangenen 19 Jahren eine Revolution in der Atomphysik ausgelöst. Quantengase bestehen aus extrem gekühlten Atomen, die auf Grund ihrer Wellennatur in einen neuen Materiezustand übergehen. Sie gehorchen dann einer sogenannten Quantenstatistik, die einem Ensemble aus Millionen von Atomen ein kollektives Verhalten verleiht, so dass sie sich zum Beispiel als kohärente Atomwelle analog zu einem gebündelten Laserlichtstrahl bewegen.

Zu diesem Zweck werden die Atome gezielt mittels Lasern auf beinahe 0 Kelvin, also minus 273 Grad Celsius gekühlt, was dem absoluten Temperaturnullpunkt entspricht. „Derart gekühlt haben die Atome gänzlich veränderte Eigenschaften. Ihre thermische Bewegung kommt fast zum Stillstand, sie haben ‚Wellencharakter‘ und ‚verschmieren‘ zu einem neuartigen Kollektiv.

Das hat von Quantensimulationen bis zu hochpräzisen Messinstrumenten eine Reihe neuer Möglichkeiten mit sich gebracht“, erklärt Wolfgang Ernst vom Institut für Experimentalphysik der TU Graz. Rasch war klar, dass Experimente an zumindest zweiatomigen Molekülen breitere Perspektiven eröffnen würden als dies mit einzelnen Atomen der Fall ist. Unklar blieb zunächst: Eignen sich Moleküle für diese extreme Kühlung und wenn ja, welche Kühlungsmethode ist am wirksamsten?

Moleküle gesucht

Als Erfolgsstrategie hat sich die Herstellung ultrakalter Moleküle aus zuvor bereits separat gekühlten Atomen erwiesen. Inzwischen gelingt es Forschergruppen in der ganzen Welt, ultrakalte zweiatomige Moleküle aus verschiedenen Alkalimetallatomen zu erzeugen. Die ultrakalten Moleküle lassen sich über das elektrische „Ungleichgewicht“ oder Dipolmoment, das alle aus unterschiedlichen Atomen zusammengesetzten, zweiatomigen Moleküle besitzen, gezielt adressieren und können somit eine gewünschte Reihe von Reaktionen auslösen.

Noch mehr Steuerungsmöglichkeiten gäbe es allerdings, wenn sich die Moleküle nicht nur via elektrisches Dipolmoment, sondern auch magnetisch „kontrollieren“ ließen. Ein solches Molekül galt es herzustellen und zu untersuchen – eine Herausforderung, der sich das Forscherteam der TU Graz erfolgreich gestellt hat. „Zweiatomige Moleküle aus einem Alkalimetallatom und einem Erdalkaliatom, beispielsweise die Paarung von Rubidium und Strontium, haben die gewünschten Eigenschaften.

Da dieses Molekül namens RbSr bislang experimentell nicht hergestellt werden konnte, war die Forschung ausschließlich auf theoretische Berechnungen angewiesen“, so Ernst. Mit seinem Team hat er dennoch einen Weg gefunden und einzelne Rubidium- und Strontiumatome auf kalten supraflüssigen Heliumnanotröpfchen isoliert. „Ganz auf sich alleine gestellt, finden die Atome in einer solchen Umgebung unweigerlich zueinander“, so der Physiker.

Diese neue Molekülklasse wurde von den Forschern der TU Graz anschließend mit verschiedenen Laseruntersuchungen vermessen; parallel dazu führten sie quantenmechanische Berechnungen durch. Sie konnten dadurch verschiedene elektronische Zustände des neuen Moleküls zuordnen und Details über die innermolekularen Wechselwirkungen ermitteln.

„Beides wird helfen, die Moleküle auch in ultrakalten Atomgemischen in einer magneto-optischen Falle zu erzeugen und damit Quanteninformationstechnologien noch ein Stück weiter zu bringen“, so Wolfgang Ernst. Für dieses Folgeprojekt kooperieren die Forscher der TU Graz mit einer Physikergruppe der Universität Amsterdam.

Förderung vom Land Steiermark

Die neue Molekülklasse RbSr ist kein Zufalls- sondern ein Nebenprodukt eines Forschungsprojektes von Wolfgang Ernst, in dem es um neuartige Materialbausteine für die Nanotechnologie geht. Dieses Projekt wurde finanziell gefördert vom Land Steiermark und der EU im Rahmen des Regionalförderungsprogrammes EFRE.


Weitere Informationen:

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.153001  - Originalpublikation
http://dx.doi.org/10.1039/C4CP03135K  - Weitere Arbeit der Gruppe zu diesem Thema

Mag. Barbara Gigler | Technische Universität Graz

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften