Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Kaktus-Prinzip

12.10.2009
Professor Alan Newell hat ein Phänomen natürlicher Selbstorganisation entschlüsselt

Professor Alan Newell von der University Tucson (USA) hielt die vierte öffentliche Lorenz-Kramer-Ge-dächtnisvorlesung an der Universität Bayreuth. Sein Vortragsthema „Phyollo-taxis in patterns and plants“ ist eines von zahlreichen faszinierenden Selbstorganisationsphänomenen in der Natur.

Damit beschäftigte sich zu seinen Lebzeiten auch der im Vortrag geehrte Professor Lo-renz Kramer. Er war von 1978 bis 2005 Professor für Theoretische Physik an der Universität Bayreuth und zählte zu den international herausragenden Forschern der Nichtlinearen Physik. Er war Mitbegründer des universitären Forschungsschwerpunktes „Nichtlineare Dynamik und Strukturbildung“ an der Universität Bayreuth.

Sandrippel, Wolkenstraßen, Fingerabdrücke, Eisblumen auf Fensterscheiben und Fellmusterungen bei Tieren sind nur einige Beispiele für sich selbst organisierende Musterbildungs-prozesse, die in einer beeindruckenden Vielfalt in der Natur vorkommen. Forscher fasziniert die Regularität vieler natürlicher Muster und deren oft noch rätselhafte Ursachen. In den Mittepunkt seines Vortrags stellte Newell den Kaktus: Beim Kaktus wachsen Zellen an der Spitze der gekrümmten Pflanzenoberfläche nach. Dabei ist zu beobachten, dass die Haut eines Kaktus an der Spitze etwas schneller wächst als das darunter liegende Zellgewe-be. Gleichzeitig verhärtet sich das Gewebe der Zellhaut, wenn es sich im Laufe des Wachstums von der Kaktusspitze entfernt. Zudem herrscht aufgrund des schnelleren Hautwachstums Überschuss an Pflanzenhaut, die sich vom darunter liegenden Gewebe nicht löst.

Beide Effekte zusammen sind die Ursache für eine Faltenbildung in den von der Pflanzenspitze weg wachsenden Kreissegmenten. Im Laufe des Wachstumsprozesses des Kaktus werden die Hügel und Täler um die Kaktusspitze durch nachwachsende Kreissegmente nach außen verdrängt, in dem sich aufgrund des unterschiedlichen Wachstums der Haut und dem darunter liegenden Zellgewebe eben-falls wieder Falten bilden. Aus diesem Wett-bewerb resultiert eine Hügellandschaft auf dem Kaktus und auf jedem Hügel bildet sich ein Stachel. Die Lage der sich neu formenden Falten wird von den früher gebildeten und im Wege stehenden Falten beeinflusst, wodurch sich die Hügel im Laufe des Kaktuswachstums spiralförmig um die Spitze anordnen.

Um die Mechanismen aufzudecken, die zu den spiralförmigen Anordnungen der Kaktusstacheln führen, interpretierte Professor Newell die Haut des Kaktus und das darunter liegende Zellgewebe als zwei im Kontakt stehende Materialien mit leicht unterschiedlichen elastischen Eigenschaften. Er konnte zeigen, dass eine spiralförmige Anordnung von Hügeln auf der gekrümmten Pflanzenoberfläche ganz natürlich aus den unterschiedlichen Wachstumsgeschwindigkeiten und der alterungsbedingten Zellverhärtung folgt.

Auch die Rolle der Fibonacci-Zahlen, die die spiralförmige Anordnung der Hügel auf dem Kaktus beschreiben, folgt aus seinem Physikermodell. Es ist ein Beispiel für die bei Selbstorganisationsphänomenen typische interdisziplinäre Forschung. Das universelle Modell beschreibt mit kleinen Veränderungen auch wesentliche Züge der Anordnung von Samenkörnern in der Sonnenblumenblüte und andere Systeme.

In den Materialwissenschaften spielt der Wettstreit zwischen der unterschiedlichen Elastizität einer ebenen Substratschicht und einer darauf aufgebrachten dünnen Haut ebenfalls eine wichtige Rolle. Vor der Auf-bringung einer dünnen Schicht, die aus ei-nem Oxid, Gold oder Kunststoff bestehen kann, wird der elastische Untergrund gedehnt. Werden danach die Kräfte vom elastischen Substrat weggenommen, so zieht sich dieses zusammen und die aufge-brachte Haut faltet sich nach ähnlichen Prinzipien wie beim Kaktus. Auf der ursprünglich ebenen Substratoberfläche bilden sich, im Gegensatz zur gekrümmten Kaktusoberfläche, nun aber streifenförmige Falten, sogenannte „Wrinkles“. Diese erfreuen sich in den Materialwissenschaften im Zusammenspiel von Chemie und Physik großer Aufmerksamkeit aufgrund ihres Potenzials für Anwendungen, wie beispielsweise in der Optik oder als Drucksensoren. Die Faltenbildung von derartigen künstlichen Schichtsystemen wird an der Universität Bayreuth gemein-sam am Lehrstuhl für Physikalische Chemie (Prof. Andreas Fery) und am Lehrstuhl für Theoretische Physik (Professor Walter Zimmermann) im Hinblick auf ein vertieftes Verständnis derartiger Struk-turbildungsprozesse und Anwendungsmöglichkeiten untersucht.

Zur Person: Professor Alan C. Newell

Nach Professor Alan C. Newell wurde mit der „Newell-Whitehead-Gleichung“ eine fundamentale Gesetzmäßigkeit der Physik benannt. Unter seinen zahlreichen Ehrungen befindet sich auch der Humboldt-Forschungspreis und im Rahmen dieses Preises war er zu mehreren Forschungs-aufenthalten an der Universität Bayreuth. Er ist Mitbegründer der bedeutendsten Zeit-schrift in der Nichtlinearen Physik und war über nahezu drei Jahrzehnte „Department Head“ (Dekan) an drei unterschiedlichen Universitäten.

Kontakt:
Pressestelle der Universität Bayreuth
Frank Schmälzle
Telefon 0921/555323
E-Mail pressestelle@uni-bayreuth.de
Professor Alan Newell von der University Tucson (USA) hielt die vierte öffentliche Lorenz-Kramer-Gedächtnisvorlesung an der Universität Bayreuth.

Frank Schmaelzle | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Internationales Forscherteam entdeckt kohärenten Lichtverstärkungsprozess in Laser-angeregtem Glas
25.09.2017 | Universität Kassel

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops