Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Kaktus-Prinzip

12.10.2009
Professor Alan Newell hat ein Phänomen natürlicher Selbstorganisation entschlüsselt

Professor Alan Newell von der University Tucson (USA) hielt die vierte öffentliche Lorenz-Kramer-Ge-dächtnisvorlesung an der Universität Bayreuth. Sein Vortragsthema „Phyollo-taxis in patterns and plants“ ist eines von zahlreichen faszinierenden Selbstorganisationsphänomenen in der Natur.

Damit beschäftigte sich zu seinen Lebzeiten auch der im Vortrag geehrte Professor Lo-renz Kramer. Er war von 1978 bis 2005 Professor für Theoretische Physik an der Universität Bayreuth und zählte zu den international herausragenden Forschern der Nichtlinearen Physik. Er war Mitbegründer des universitären Forschungsschwerpunktes „Nichtlineare Dynamik und Strukturbildung“ an der Universität Bayreuth.

Sandrippel, Wolkenstraßen, Fingerabdrücke, Eisblumen auf Fensterscheiben und Fellmusterungen bei Tieren sind nur einige Beispiele für sich selbst organisierende Musterbildungs-prozesse, die in einer beeindruckenden Vielfalt in der Natur vorkommen. Forscher fasziniert die Regularität vieler natürlicher Muster und deren oft noch rätselhafte Ursachen. In den Mittepunkt seines Vortrags stellte Newell den Kaktus: Beim Kaktus wachsen Zellen an der Spitze der gekrümmten Pflanzenoberfläche nach. Dabei ist zu beobachten, dass die Haut eines Kaktus an der Spitze etwas schneller wächst als das darunter liegende Zellgewe-be. Gleichzeitig verhärtet sich das Gewebe der Zellhaut, wenn es sich im Laufe des Wachstums von der Kaktusspitze entfernt. Zudem herrscht aufgrund des schnelleren Hautwachstums Überschuss an Pflanzenhaut, die sich vom darunter liegenden Gewebe nicht löst.

Beide Effekte zusammen sind die Ursache für eine Faltenbildung in den von der Pflanzenspitze weg wachsenden Kreissegmenten. Im Laufe des Wachstumsprozesses des Kaktus werden die Hügel und Täler um die Kaktusspitze durch nachwachsende Kreissegmente nach außen verdrängt, in dem sich aufgrund des unterschiedlichen Wachstums der Haut und dem darunter liegenden Zellgewebe eben-falls wieder Falten bilden. Aus diesem Wett-bewerb resultiert eine Hügellandschaft auf dem Kaktus und auf jedem Hügel bildet sich ein Stachel. Die Lage der sich neu formenden Falten wird von den früher gebildeten und im Wege stehenden Falten beeinflusst, wodurch sich die Hügel im Laufe des Kaktuswachstums spiralförmig um die Spitze anordnen.

Um die Mechanismen aufzudecken, die zu den spiralförmigen Anordnungen der Kaktusstacheln führen, interpretierte Professor Newell die Haut des Kaktus und das darunter liegende Zellgewebe als zwei im Kontakt stehende Materialien mit leicht unterschiedlichen elastischen Eigenschaften. Er konnte zeigen, dass eine spiralförmige Anordnung von Hügeln auf der gekrümmten Pflanzenoberfläche ganz natürlich aus den unterschiedlichen Wachstumsgeschwindigkeiten und der alterungsbedingten Zellverhärtung folgt.

Auch die Rolle der Fibonacci-Zahlen, die die spiralförmige Anordnung der Hügel auf dem Kaktus beschreiben, folgt aus seinem Physikermodell. Es ist ein Beispiel für die bei Selbstorganisationsphänomenen typische interdisziplinäre Forschung. Das universelle Modell beschreibt mit kleinen Veränderungen auch wesentliche Züge der Anordnung von Samenkörnern in der Sonnenblumenblüte und andere Systeme.

In den Materialwissenschaften spielt der Wettstreit zwischen der unterschiedlichen Elastizität einer ebenen Substratschicht und einer darauf aufgebrachten dünnen Haut ebenfalls eine wichtige Rolle. Vor der Auf-bringung einer dünnen Schicht, die aus ei-nem Oxid, Gold oder Kunststoff bestehen kann, wird der elastische Untergrund gedehnt. Werden danach die Kräfte vom elastischen Substrat weggenommen, so zieht sich dieses zusammen und die aufge-brachte Haut faltet sich nach ähnlichen Prinzipien wie beim Kaktus. Auf der ursprünglich ebenen Substratoberfläche bilden sich, im Gegensatz zur gekrümmten Kaktusoberfläche, nun aber streifenförmige Falten, sogenannte „Wrinkles“. Diese erfreuen sich in den Materialwissenschaften im Zusammenspiel von Chemie und Physik großer Aufmerksamkeit aufgrund ihres Potenzials für Anwendungen, wie beispielsweise in der Optik oder als Drucksensoren. Die Faltenbildung von derartigen künstlichen Schichtsystemen wird an der Universität Bayreuth gemein-sam am Lehrstuhl für Physikalische Chemie (Prof. Andreas Fery) und am Lehrstuhl für Theoretische Physik (Professor Walter Zimmermann) im Hinblick auf ein vertieftes Verständnis derartiger Struk-turbildungsprozesse und Anwendungsmöglichkeiten untersucht.

Zur Person: Professor Alan C. Newell

Nach Professor Alan C. Newell wurde mit der „Newell-Whitehead-Gleichung“ eine fundamentale Gesetzmäßigkeit der Physik benannt. Unter seinen zahlreichen Ehrungen befindet sich auch der Humboldt-Forschungspreis und im Rahmen dieses Preises war er zu mehreren Forschungs-aufenthalten an der Universität Bayreuth. Er ist Mitbegründer der bedeutendsten Zeit-schrift in der Nichtlinearen Physik und war über nahezu drei Jahrzehnte „Department Head“ (Dekan) an drei unterschiedlichen Universitäten.

Kontakt:
Pressestelle der Universität Bayreuth
Frank Schmälzle
Telefon 0921/555323
E-Mail pressestelle@uni-bayreuth.de
Professor Alan Newell von der University Tucson (USA) hielt die vierte öffentliche Lorenz-Kramer-Gedächtnisvorlesung an der Universität Bayreuth.

Frank Schmaelzle | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Raumschrott im Fokus
22.05.2018 | Universität Bern

nachricht Countdown für Kilogramm, Kelvin und Co.
18.05.2018 | Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

48V im Fokus!

21.05.2018 | Veranstaltungsnachrichten

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics