Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kaiserslauterer Physiker beobachten Diffusion einzelner Atome im Lichtbad

10.10.2016

Durch eine Kombination aus Experimenten und Theorie konnte erstmals die Diffusion einzelner Atome in periodischen Systemen verstanden werden. Die Wechselwirkung von einzelnen Atomen mit Licht bei ultratiefen Temperaturen fast am absoluten Nullpunkt liefert neue Erkenntnisse zur Ergodizität, der Grundannahme der Thermodynamik. Gemeinsam mit Forscherkollegen haben Quantenphysiker der TU Kaiserslautern ihre Ergebnisse nun in der renommierten Fachzeitschrift „Nature Physics“ veröffentlicht.

Unter Diffusion versteht man ein universelles physikalisches Phänomen, welches die Bewegung von Teilchen in ihrer jeweiligen Umgebung beschreibt, egal ob fest, flüssig oder gasförmig. Die ersten Untersuchungen von Robert Brown und die Erklärungen dazu von Albert Einstein liegen bereits mehr als hundert Jahre zurück: Robert Brown beobachtete die zufällige, unregelmäßige Zitterbewegung von Pollen in einer Flüssigkeit.


Fluoreszenzaufnah-men der Diffusion eines einzelnen Atoms.

TU Kaiserslautern/AG Widera

Albert Einstein und sein Forscherkollege Marian Smoluchowski interpretierten diese „Brownsche Bewegung“ korrekt als Folge der zufälligen Stöße von Flüssigkeitsmolekülen mit den Pollen. Die Diffusion in komplexen Systemen geht noch einen Schritt weiter und kann sehr verschiedene Eigenschaften haben: Tumorbewegung in Lebewesen, DNA-Transport in Zellen, Ionenbewegung in Batterien, atomare Bewegung auf Oberflächen – all dies sind Diffusionsvorgänge in komplexen Systemen.

An der Aufklärung der zugrundeliegenden Mechanismen besteht großes Interesse, die eines Tages bis weit in alltägliche Anwendungen reichen könnten. Physikalische Untersuchungen an ultrakalten Atomen, die an der TU Kaiserslautern durchgeführt wurden, liefern nun ein Verständnis für die Diffusion in periodischen Strukturen, relevant für verschiedenste komplexe Systeme.

... mehr zu:
»Atom »Atome »Brownsche Bewegung »Diffusion

Physiker der TU Kaiserslautern haben zusammen mit Wissenschaftlern der Universitäten Erlangen-Nürnberg und Kyoto in Japan einen wichtigen Schritt zum grundlegenden Verständnis der komplexen Diffusion und der Interpretation ihrer experimentellen Daten gemacht.

Für die Studie, die in der renommierten Fachzeitschrift Nature Physics veröffentlicht wurde, entwickelte das Kaiserslauterer Team um Professor Widera (Fachbereich Physik und Landesforschungszentrum OPTIMAS) ein neuartiges Modellsystem: Ein einzelnes Atom wird mit Lasern bis fast auf den absoluten Nullpunkt abgekühlt und in einer Falle aus Licht in einem nahezu perfekten Vakuum gefangen.

Das Atom wird dann in eine durch ein Lichtfeld erzeugte Umgebung eingebracht, in der die Licht-Absorption und Licht-Emission der Atome wie Stöße mit einem anderen Teilchen wirken. In dieser Umgebung kann die Diffusion nach Belieben eingestellt und die Bewegung des Atoms mit einer Kamera verfolgt werden.

Parallel entwickelten theoretische Physiker aus Erlangen-Nürnberg und Kyoto ein Modell zur Beschreibung der Dynamik des Systems. Zentraler Aspekt hierbei war, die Vorgänge im Hinblick auf die physikalische Größe der Ergodizität zu verstehen. Dank der hervorragenden Übereinstimmung von Experiment und Theorie konnten nun Diffusionsvorgänge jenseits der Brownschen Bewegung verstanden werden. Diese Ergebnisse könnten sich zukünftig auf das Verständnis von verschiedensten komplexen Systemen in Medizin, Biologie, Physik und Technik auswirken.

Grundlagen der Diffusion

Die Bewegung einzelner Zellen im Körper oder der Transport von Ladungsträgern in Energiespeichern sind nur im Zusammenhang mit der jeweiligen Umgebung zu verstehen. Die Teilchen dieser Umgebung stoßen permanent mit einer Zelle oder einem Ladungsträger und beeinflussen so ihre Bewegung. Diese Vorgänge können in vielen Fällen durch die Brownsche Bewegung mit der Theorie von Einstein beschrieben werden. Manchmal lassen sich die Beobachtungen allerdings nicht mit diesem Modell beschreiben, bisweilen kann man dem System diese nicht-Brownsche Dynamik auf den ersten Blick nicht ansehen. Den Wissenschaftlern der drei Universitäten ist es gelungen, sowohl theoretisch als auch experimentell zu zeigen, wie sich in bestimmten komplexen Systemen die Diffusion charakterisieren lässt.

Die Ergodizität als Schlüssel zum Verständnis komplexer Diffusionen

Ein zentraler Aspekt der Studien war es, das atomare System auf Zeitskalen zu untersuchen, die relevant für die Etablierung von Ergodizität sind. Ergodizität ist die Grundlage für die Thermodynamik und eine wichtige Größe für die Beschreibung von Diffusionsvorgängen. In einfachen Worten besagt die Ergodizitätshypothese, dass in einer Ansammlung von Teilchen die Bewegung eines einzelnen Teilchens repräsentativ für das gesamte Ensemble ist. Diese Annahme wird in der Regel allen beobachteten Phänomenen unseres Alltags zugrunde gelegt. Das gilt streng gesehen für die meisten Systeme allerdings nur für sehr große Zeiträume. Die Wissenschaftler konnten in ihrer Studie nun zeigen, dass selbst „normal“ erscheinende Diffusionsvorgänge in bestimmten Fällen die Ergodizität auf überraschend langen Zeitskalen verletzen können. Diese Ergebnisse haben interessante Konsequenzen für das Verständnis der Diffusion in komplexen Systemen und können zum Beispiel helfen, Beobachtungen und Messungen in biologischen Systemen neu zu bewerten und zu interpretieren.

Die Studie wurde in der renommierten Fachzeitschrift Nature Physics veröffentlicht: „Nonergodic diffusion of single atoms in a periodic potential“.
DOI 10.1038/nphys3911

Fragen dazu beantwortet:
Prof. Dr. Artur Widera - TU Kaiserslautern
Tel: 0631-205-4130
E-Mail: widera@physik.uni-kl.de

Katrin Müller | Technische Universität Kaiserslautern
Weitere Informationen:
http://www.uni-kl.de

Weitere Berichte zu: Atom Atome Brownsche Bewegung Diffusion

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen