Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Jupiters „Trojaner“ im Atom-Format

25.01.2012
Berechnungen der TU Wien erfolgreich im Experiment umgesetzt: Ähnlich wie der Planet Jupiter Asteroiden auf stabilen Bahnen hält, lassen sich Elektronen in Kalium-Atomen durch elektromagnetische Felder stabilisieren.

Milliarden Jahre können Planeten und Asteroiden regelmäßig rund um die Sonne kreisen. Auch Elektronen, die sich rund um einen Atomkern bewegen, stellt man sich gerne wie Planeten im Mini-Format vor.


Das Bohrsche Atommodell geht von Atomen aus, die ähnlich wie ein Planet um den Atomkern kreisen. Durch technische Tricks wird das Elektron (grün) über lange Zeit zusammengehalten, ohne sich über die ganze Kreisbahn zu verteilen. TU Wien

In Wirklichkeit verhalten sich Atome aufgrund quantenphysikalischer Effekte aber doch ganz anders als Planetensysteme. Nun ist es einem US-amerikanisch-österreichischen Forschungsteam gelungen, Elektronen in Atomen lange Zeit stabil auf planetenartigen Bahnen kreisen zu lassen.

Den entscheidenden Trick dafür hat man sich vom Jupiter abgeschaut: Er stabilisiert die Bahnen von Asteroiden – den sogenannten „Trojanern“ - und auf ganz ähnliche Weise konnten nun Elektronen-Bahnen rund um den Atomkern durch ein elektromagnetisches Feld stabilisiert werden. Die Forschungsergebnisse wurden nun im Fachjournal „Physical Review Letters“ publiziert.

Riesen-Atome

Es sind die wohl größten Atome der Erde: „Einen Hundertstel Millimeter beträgt der Durchmesser der Elektronenbahnen – für atomare Verhältnisse eine gewaltige Distanz“, erklärt Shuhei Yoshida. Die Atome sind damit größer als rote Blutkörperchen. Yoshida führte am Institut für Theoretische Physik der TU Wien die Berechnungen durch, an der Rice University in Houston (Texas) wurden die Ideen experimentell umgesetzt.

Ein Elektron ist kein Planet

Die Vorstellung, dass Atome und Planetensysteme einiges gemeinsam haben, ist nicht neu: Schon das erste Atommodell von Niels Bohr ging von Elektronen aus, die sich auf festen Bahnen rund um einen Atomkern bewegen. Dieses Bild gilt aber längst als veraltet. Quantenmechanisch wird das Elektron Quanten-Welle oder als „Wahrscheinlichkeitswolke“ beschrieben, die den Atomkern umgibt. Ein Elektron im niedrigsten Energiezustand befindet sich gleichzeitig in allen möglichen Richtungen rund um den Kern – von einem genauen Aufenthaltsort oder einer echten Umlaufbahn kann hier keine Rede sein. Erst wenn man das Elektron auf ein höheres Energie-Niveau anhebt, lässt es sich so präparieren, dass es planetenartigen Bahnen folgt.

Jupiters Trick - auf Atome angewandt

Im Gegensatz zu Planeten bewegen sich die Elektronen aber nicht dauerhaft so weiter: „Ohne zusätzliche Stabilisierung würde sich die Elektronen-Welle schon nach wenigen Umläufen wieder gleichmäßig entlang der Bahn verteilen und hätte keine feste Position mehr“, sagt Prof. Burgdörfer, Vorstand des Instituts für Theoretische Physik. Eine mögliche Stabilisierung solcher Bahnen kennt man aus der Astronomie schon lange: Jupiter, der schwerste Planet unseres Sonnensystems, stabilisiert durch seine Anziehungskraft die Bahnen der „Trojaner“ – das sind tausende kleine Asteroiden, die sich mit Jupiter eine Bahn um die Sonne teilen. Auf den so genannten „Lagrange-Punkten“ werden sie festgehalten, und entlang dieser Bahn bewegen sie sich mit Jupiter mit – genau mit der selben Umlaufgeschwindigkeit wie Jupiter selbst, sodass sie nie mit dem Planeten kollidieren.
Im Atom-Experiment wird diese stabilisierende Wirkung des Jupiters durch ein raffiniert gewähltes elektromagnetisches Feld ersetzt: Das Feld oszilliert genau in der Frequenz, die der Umlaufdauer des Elektrons um den Kern entspricht – es gibt dem Elektron also den richtigen Takt vor und hält die Quanten-Welle des Elektrons viele Umdrehungen lang in einem engen Bereich lokalisiert. Am Atom lassen sich sogar Manipulationen durchführen, die im Planetensystem nicht möglich wären: Das Elektron kann gezielt in eine andere Umlaufbahn überführt werden – so als würde man den Jupiter samt der Asteroiden auf die Saturn-Bahn schieben.

Das Kleine und das Große

Damit ist es gelungen, astronomische Gegebenheiten in einer quantenphysikalischen Miniatur-Version nachzubauen und Atome zu erzeugen, die dem historischen Bohrschen Atommodell erstaunlich nahe kommen. In Zukunft will das internationale Forschungsteam Atome präparieren, in denen sich gleich mehrere Elektronen auf planetenartigen Bahnen bewegen. Mit solchen Atomen soll es möglich sein, genauer zu erforschen, wie die Quanten-Welt der winzig kleinen Objekte mit der klassischen Welt unserer Alltagserfahrung zusammenhängt.
Rückfragehinweise:

Ao.Prof. Shuhei Yoshida
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstraße 8, 1040 Wien
+43-1-58801-13611
shuhei.yoshida@tuwien.ac.at

Prof. Joachim Burgdörfer
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstraße 8, 1040 Wien
+43-1-58801-13610
burg@concord.itp.tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at
http://link.aps.org/doi/10.1103/PhysRevLett.108.043001

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eine Extra-Sekunde zum neuen Jahr
08.12.2016 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Heimcomputer entdecken rekordverdächtiges Pulsar-Neutronenstern-System
08.12.2016 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops