Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Jupiters „Trojaner“ im Atom-Format

25.01.2012
Berechnungen der TU Wien erfolgreich im Experiment umgesetzt: Ähnlich wie der Planet Jupiter Asteroiden auf stabilen Bahnen hält, lassen sich Elektronen in Kalium-Atomen durch elektromagnetische Felder stabilisieren.

Milliarden Jahre können Planeten und Asteroiden regelmäßig rund um die Sonne kreisen. Auch Elektronen, die sich rund um einen Atomkern bewegen, stellt man sich gerne wie Planeten im Mini-Format vor.


Das Bohrsche Atommodell geht von Atomen aus, die ähnlich wie ein Planet um den Atomkern kreisen. Durch technische Tricks wird das Elektron (grün) über lange Zeit zusammengehalten, ohne sich über die ganze Kreisbahn zu verteilen. TU Wien

In Wirklichkeit verhalten sich Atome aufgrund quantenphysikalischer Effekte aber doch ganz anders als Planetensysteme. Nun ist es einem US-amerikanisch-österreichischen Forschungsteam gelungen, Elektronen in Atomen lange Zeit stabil auf planetenartigen Bahnen kreisen zu lassen.

Den entscheidenden Trick dafür hat man sich vom Jupiter abgeschaut: Er stabilisiert die Bahnen von Asteroiden – den sogenannten „Trojanern“ - und auf ganz ähnliche Weise konnten nun Elektronen-Bahnen rund um den Atomkern durch ein elektromagnetisches Feld stabilisiert werden. Die Forschungsergebnisse wurden nun im Fachjournal „Physical Review Letters“ publiziert.

Riesen-Atome

Es sind die wohl größten Atome der Erde: „Einen Hundertstel Millimeter beträgt der Durchmesser der Elektronenbahnen – für atomare Verhältnisse eine gewaltige Distanz“, erklärt Shuhei Yoshida. Die Atome sind damit größer als rote Blutkörperchen. Yoshida führte am Institut für Theoretische Physik der TU Wien die Berechnungen durch, an der Rice University in Houston (Texas) wurden die Ideen experimentell umgesetzt.

Ein Elektron ist kein Planet

Die Vorstellung, dass Atome und Planetensysteme einiges gemeinsam haben, ist nicht neu: Schon das erste Atommodell von Niels Bohr ging von Elektronen aus, die sich auf festen Bahnen rund um einen Atomkern bewegen. Dieses Bild gilt aber längst als veraltet. Quantenmechanisch wird das Elektron Quanten-Welle oder als „Wahrscheinlichkeitswolke“ beschrieben, die den Atomkern umgibt. Ein Elektron im niedrigsten Energiezustand befindet sich gleichzeitig in allen möglichen Richtungen rund um den Kern – von einem genauen Aufenthaltsort oder einer echten Umlaufbahn kann hier keine Rede sein. Erst wenn man das Elektron auf ein höheres Energie-Niveau anhebt, lässt es sich so präparieren, dass es planetenartigen Bahnen folgt.

Jupiters Trick - auf Atome angewandt

Im Gegensatz zu Planeten bewegen sich die Elektronen aber nicht dauerhaft so weiter: „Ohne zusätzliche Stabilisierung würde sich die Elektronen-Welle schon nach wenigen Umläufen wieder gleichmäßig entlang der Bahn verteilen und hätte keine feste Position mehr“, sagt Prof. Burgdörfer, Vorstand des Instituts für Theoretische Physik. Eine mögliche Stabilisierung solcher Bahnen kennt man aus der Astronomie schon lange: Jupiter, der schwerste Planet unseres Sonnensystems, stabilisiert durch seine Anziehungskraft die Bahnen der „Trojaner“ – das sind tausende kleine Asteroiden, die sich mit Jupiter eine Bahn um die Sonne teilen. Auf den so genannten „Lagrange-Punkten“ werden sie festgehalten, und entlang dieser Bahn bewegen sie sich mit Jupiter mit – genau mit der selben Umlaufgeschwindigkeit wie Jupiter selbst, sodass sie nie mit dem Planeten kollidieren.
Im Atom-Experiment wird diese stabilisierende Wirkung des Jupiters durch ein raffiniert gewähltes elektromagnetisches Feld ersetzt: Das Feld oszilliert genau in der Frequenz, die der Umlaufdauer des Elektrons um den Kern entspricht – es gibt dem Elektron also den richtigen Takt vor und hält die Quanten-Welle des Elektrons viele Umdrehungen lang in einem engen Bereich lokalisiert. Am Atom lassen sich sogar Manipulationen durchführen, die im Planetensystem nicht möglich wären: Das Elektron kann gezielt in eine andere Umlaufbahn überführt werden – so als würde man den Jupiter samt der Asteroiden auf die Saturn-Bahn schieben.

Das Kleine und das Große

Damit ist es gelungen, astronomische Gegebenheiten in einer quantenphysikalischen Miniatur-Version nachzubauen und Atome zu erzeugen, die dem historischen Bohrschen Atommodell erstaunlich nahe kommen. In Zukunft will das internationale Forschungsteam Atome präparieren, in denen sich gleich mehrere Elektronen auf planetenartigen Bahnen bewegen. Mit solchen Atomen soll es möglich sein, genauer zu erforschen, wie die Quanten-Welt der winzig kleinen Objekte mit der klassischen Welt unserer Alltagserfahrung zusammenhängt.
Rückfragehinweise:

Ao.Prof. Shuhei Yoshida
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstraße 8, 1040 Wien
+43-1-58801-13611
shuhei.yoshida@tuwien.ac.at

Prof. Joachim Burgdörfer
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstraße 8, 1040 Wien
+43-1-58801-13610
burg@concord.itp.tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at
http://link.aps.org/doi/10.1103/PhysRevLett.108.043001

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher studieren molekulare Konversion auf einer Zeitskala von wenigen Femtosekunden
19.10.2017 | Forschungsverbund Berlin e.V.

nachricht Gravitationswellen: Sternenglanz für Jenaer Forscher
19.10.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Aufräumen? Nicht ohne Helfer

19.10.2017 | Biowissenschaften Chemie

Neue Biotinte für den Druck gewebeähnlicher Strukturen

19.10.2017 | Materialwissenschaften

Forscher studieren molekulare Konversion auf einer Zeitskala von wenigen Femtosekunden

19.10.2017 | Physik Astronomie