Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Jupiter ist ältester Planet des Sonnensystems

13.06.2017

Erstmals Altersbestimmung des Jupiter durch Meteoriten-Analyse von münsterschen Planetologen

Jupiter ist der älteste Planet des Sonnensystems. Das haben Planetologen der Westfälischen Wilhelms-Universität Münster jetzt erstmals nachgewiesen. Demnach war die Bildung des Planeten bereits vier Millionen Jahre nach der Entstehung des Sonnensystems abgeschlossen.


Jupiter, aufgenommen von der Raumsonde "Voyager 1"

© NASA

Jupiter ist nicht nur der größte Planet des Sonnensystems, sondern auch der älteste, wie Planetologen der Westfälischen Wilhelms-Universität Münster (WWU) jetzt berichten. Ihnen ist es erstmals gelungen, sein Alter zu bestimmen. Bisher war das Alter Jupiters nicht bekannt – es gab nur Schätzungen.

Dies liegt unter anderem daran, dass es keine Gesteinsproben des Planeten gibt und Forscher daher keine direkten Messungen durchführen können. Die Münsteraner zogen nun durch Untersuchungen an Meteoriten Rückschlüsse auf das Alter von Jupiter. Die Studie ist in der aktuellen Ausgabe des Fachmagazins "Proceedings of the National Academy of Science of the United States of America" online veröffentlicht.

Jupiter war demnach spätestens eine Million Jahre nach Bildung des Sonnensystems auf die zwanzigfache Masse der heutigen Erde angewachsen. Das Sonnensystem entstand vor mehr als 4,5 Milliarden Jahren. Nach Erreichen der 20 Erdmassen dauerte es weitere drei Millionen Jahre, bis die Entstehung Jupiters abgeschlossen war.

"Trotz seiner großen Masse entstand Jupiter also nach kosmischen Maßstäben extrem schnell innerhalb von nur vier Millionen Jahren. Zwar haben theoretische Modelle bereits vorhergesagt, dass Jupiter schnell entstanden sein muss, aber diese Voraussagen sind sehr ungenau", urteilt Dr. Thomas Kruijer, Erstautor der Studie. Zum Vergleich: Die Erde, die nur etwa ein 380stel der Masse Jupiters hat, benötigte ungefähr 100 Millionen Jahre für ihre Entstehung.

Um das Alter von Jupiter zu bestimmen, gingen die Forscher einen Umweg und untersuchten Meteorite. Diese Gesteinsbrocken stammen von Asteroiden, die sich heute in einem Gürtel zwischen Mars und Jupiter befinden.

Die münsterschen Wissenschaftler wiesen mithilfe von Isotopenmessungen nach, dass diese Asteroide in zwei unterschiedlichen Regionen des Sonnensystems entstanden: diesseits und – was für die Wissenschaftler eine überraschende neue Erkenntnis ist – auch jenseits der Umlaufbahn von Jupiter. Die Forscher nutzten die Isotopen-Zusammensetzungen wie einen genetischen Fingerabdruck, um Verwandschaftsbeziehungen zwischen verschiedenen Meteoriten herzustellen.

20 Erdmassen in weniger als einer Million Jahre

Durch Altersbestimmungen zeigten sie, dass sich die Asteroide diesseits und jenseits des Jupiters etwa zwischen einer Million Jahre und vier Millionen Jahren nach Entstehung des Sonnensystems bildeten. Prof. Dr. Thorsten Kleine erläutert: "Während der Entstehung der Asteroide gab es keinen Materialaustausch zwischen den beiden Regionen. Dies kann man durch die Bildung von Jupiter erklären: Sobald Jupiter etwa 20 Erdmassen erreicht hatte, verhinderte er laut Modellrechnungen den Austausch von Material von jenseits und diesseits seiner Umlaufbahn." Im Umkehrschluss hieße dies: Jupiter muss die 20 Erdmassen in weniger als einer Million Jahre nach Entstehung des Sonnensystems erreicht haben.

Nach vier Millionen Jahren ist die Bildung abgeschlossen

Die 20 Erdmassen entsprechen dem festen Kern des Jupiter. Nachdem dieser Kern aus Gestein entstanden war, wuchs Jupiter durch das "Ansammeln" (Akkretion) von Gas zunächst relativ langsam bis auf etwa 50 Erdmassen an. Die münsterschen Forscher konnten den Zeitpunkt, an dem Jupiter rund 50 Erdmassen hatte, bestimmen. Denn mit dem Erreichen dieser Masse wurde der gravitative Einfluss von Jupiter so groß, dass Asteroide von jenseits seiner Umlaufbahn in das innere Sonnensystem gestreut wurden.

"Dieser Prozess kann nicht eingesetzt haben, bevor die Bildung der Asteroide abgeschlossen war, sonst hätten wir eine Durchmischung des Materials bei der Isotopen-Analyse festgestellt", erläutert Thomas Kruijer, der inzwischen am "Lawrence Livermore National Laboratory" in Kalifornien, USA, forscht. Den Zeitpunkt des Erreichens der 50 Erdmassen haben die Forscher auf etwa vier Millionen Jahren nach Entstehung des Sonnensystems eingegrenzt. Danach, so legen Modellrechnungen nahe, muss der Jupiter durch seine massebedingt starke Anziehungskraft extrem schnell seine endgültige Masse von 384 Erdmassen durch weitere Gas-Akkretion erreicht haben.

Implikationen für die Frühgeschichte des Sonnensystems

Das sehr schnelle Wachstum von Jupiter hat laut den münsterschen Planetologen wichtige Implikationen für die frühe Entwicklung des Sonnensystems und die Entstehungsgeschichte der vier sonnennächsten Planeten Merkur, Venus, Erde und Mars ("terrestrische Planeten", auch Gesteinsplaneten genannt). So seien durch das Wachstum von Jupiter wasserreiche Asteroide aus dem äußeren in das innere Sonnensystem gebracht worden, wo sie unter anderem in die Erde eingebaut worden sein kö

nnten. Diese wasserreichen Asteroide seien also möglicherweise die Quelle des irdischen Wassers. Das schnelle Wachstum von Jupiter habe aber auch verhindert, dass große Mengen von Material in das innere Sonnensystem gelangten. Das könne erklären, warum Mars relativ klein geblieben sei und warum es in unserem Sonnensystem im Gegensatz zu vielen extrasolaren Sternensystemen keine "Super-Erden", also besonders große terrestrische Planeten, gäbe. "Dass wir Meteorite haben, welche jenseits von Jupiter entstanden sind, ist eine völlig neue Erkenntnis", unterstreicht Thorsten Kleine. "Sie verändert unser Verständnis des frühen Sonnensystems nachhaltig."

Die Arbeit entstand im Rahmen des Sonderforschungsbereichs/Transregio (TRR) 170 "Late accretion onto terrestrial planets" ("Spätes Wachstum erdähnlicher Planeten") an der WWU Münster und wurde von der Deutschen Forschungsgemeinschaft sowie dem europäischen Forschungsrat (ERC) unterstützt.

Originalpublikation:

T.S. Kruijer, C. Burkhardt, G. Budde and T. Kleine (2017): Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proceedings of the National Academy of Science of the United States of America (Early Edition); doi:10.1073/pnas.1704461114

Weitere Informationen:

http://www.uni-muenster.de/Planetology/ifp/personen/kleine_thorsten/profil.shtml Prof. Thorsten Kleine (Professur für Experimentelle und Analytische Planetologie) an der WWU Münster

Dr. Christina Heimken | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-muenster.de/

Weitere Berichte zu: Erdmassen Jupiter Mars Meteoriten Planet Sonnensystem Umlaufbahn

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Bilder magnetischer Strukturen auf der Nano-Skala
20.04.2018 | Georg-August-Universität Göttingen

nachricht Licht macht Ionen Beine
20.04.2018 | Max-Planck-Institut für Festkörperforschung, Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics