Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Jupiter ist ältester Planet des Sonnensystems

13.06.2017

Erstmals Altersbestimmung des Jupiter durch Meteoriten-Analyse von münsterschen Planetologen

Jupiter ist der älteste Planet des Sonnensystems. Das haben Planetologen der Westfälischen Wilhelms-Universität Münster jetzt erstmals nachgewiesen. Demnach war die Bildung des Planeten bereits vier Millionen Jahre nach der Entstehung des Sonnensystems abgeschlossen.


Jupiter, aufgenommen von der Raumsonde "Voyager 1"

© NASA

Jupiter ist nicht nur der größte Planet des Sonnensystems, sondern auch der älteste, wie Planetologen der Westfälischen Wilhelms-Universität Münster (WWU) jetzt berichten. Ihnen ist es erstmals gelungen, sein Alter zu bestimmen. Bisher war das Alter Jupiters nicht bekannt – es gab nur Schätzungen.

Dies liegt unter anderem daran, dass es keine Gesteinsproben des Planeten gibt und Forscher daher keine direkten Messungen durchführen können. Die Münsteraner zogen nun durch Untersuchungen an Meteoriten Rückschlüsse auf das Alter von Jupiter. Die Studie ist in der aktuellen Ausgabe des Fachmagazins "Proceedings of the National Academy of Science of the United States of America" online veröffentlicht.

Jupiter war demnach spätestens eine Million Jahre nach Bildung des Sonnensystems auf die zwanzigfache Masse der heutigen Erde angewachsen. Das Sonnensystem entstand vor mehr als 4,5 Milliarden Jahren. Nach Erreichen der 20 Erdmassen dauerte es weitere drei Millionen Jahre, bis die Entstehung Jupiters abgeschlossen war.

"Trotz seiner großen Masse entstand Jupiter also nach kosmischen Maßstäben extrem schnell innerhalb von nur vier Millionen Jahren. Zwar haben theoretische Modelle bereits vorhergesagt, dass Jupiter schnell entstanden sein muss, aber diese Voraussagen sind sehr ungenau", urteilt Dr. Thomas Kruijer, Erstautor der Studie. Zum Vergleich: Die Erde, die nur etwa ein 380stel der Masse Jupiters hat, benötigte ungefähr 100 Millionen Jahre für ihre Entstehung.

Um das Alter von Jupiter zu bestimmen, gingen die Forscher einen Umweg und untersuchten Meteorite. Diese Gesteinsbrocken stammen von Asteroiden, die sich heute in einem Gürtel zwischen Mars und Jupiter befinden.

Die münsterschen Wissenschaftler wiesen mithilfe von Isotopenmessungen nach, dass diese Asteroide in zwei unterschiedlichen Regionen des Sonnensystems entstanden: diesseits und – was für die Wissenschaftler eine überraschende neue Erkenntnis ist – auch jenseits der Umlaufbahn von Jupiter. Die Forscher nutzten die Isotopen-Zusammensetzungen wie einen genetischen Fingerabdruck, um Verwandschaftsbeziehungen zwischen verschiedenen Meteoriten herzustellen.

20 Erdmassen in weniger als einer Million Jahre

Durch Altersbestimmungen zeigten sie, dass sich die Asteroide diesseits und jenseits des Jupiters etwa zwischen einer Million Jahre und vier Millionen Jahren nach Entstehung des Sonnensystems bildeten. Prof. Dr. Thorsten Kleine erläutert: "Während der Entstehung der Asteroide gab es keinen Materialaustausch zwischen den beiden Regionen. Dies kann man durch die Bildung von Jupiter erklären: Sobald Jupiter etwa 20 Erdmassen erreicht hatte, verhinderte er laut Modellrechnungen den Austausch von Material von jenseits und diesseits seiner Umlaufbahn." Im Umkehrschluss hieße dies: Jupiter muss die 20 Erdmassen in weniger als einer Million Jahre nach Entstehung des Sonnensystems erreicht haben.

Nach vier Millionen Jahren ist die Bildung abgeschlossen

Die 20 Erdmassen entsprechen dem festen Kern des Jupiter. Nachdem dieser Kern aus Gestein entstanden war, wuchs Jupiter durch das "Ansammeln" (Akkretion) von Gas zunächst relativ langsam bis auf etwa 50 Erdmassen an. Die münsterschen Forscher konnten den Zeitpunkt, an dem Jupiter rund 50 Erdmassen hatte, bestimmen. Denn mit dem Erreichen dieser Masse wurde der gravitative Einfluss von Jupiter so groß, dass Asteroide von jenseits seiner Umlaufbahn in das innere Sonnensystem gestreut wurden.

"Dieser Prozess kann nicht eingesetzt haben, bevor die Bildung der Asteroide abgeschlossen war, sonst hätten wir eine Durchmischung des Materials bei der Isotopen-Analyse festgestellt", erläutert Thomas Kruijer, der inzwischen am "Lawrence Livermore National Laboratory" in Kalifornien, USA, forscht. Den Zeitpunkt des Erreichens der 50 Erdmassen haben die Forscher auf etwa vier Millionen Jahren nach Entstehung des Sonnensystems eingegrenzt. Danach, so legen Modellrechnungen nahe, muss der Jupiter durch seine massebedingt starke Anziehungskraft extrem schnell seine endgültige Masse von 384 Erdmassen durch weitere Gas-Akkretion erreicht haben.

Implikationen für die Frühgeschichte des Sonnensystems

Das sehr schnelle Wachstum von Jupiter hat laut den münsterschen Planetologen wichtige Implikationen für die frühe Entwicklung des Sonnensystems und die Entstehungsgeschichte der vier sonnennächsten Planeten Merkur, Venus, Erde und Mars ("terrestrische Planeten", auch Gesteinsplaneten genannt). So seien durch das Wachstum von Jupiter wasserreiche Asteroide aus dem äußeren in das innere Sonnensystem gebracht worden, wo sie unter anderem in die Erde eingebaut worden sein kö

nnten. Diese wasserreichen Asteroide seien also möglicherweise die Quelle des irdischen Wassers. Das schnelle Wachstum von Jupiter habe aber auch verhindert, dass große Mengen von Material in das innere Sonnensystem gelangten. Das könne erklären, warum Mars relativ klein geblieben sei und warum es in unserem Sonnensystem im Gegensatz zu vielen extrasolaren Sternensystemen keine "Super-Erden", also besonders große terrestrische Planeten, gäbe. "Dass wir Meteorite haben, welche jenseits von Jupiter entstanden sind, ist eine völlig neue Erkenntnis", unterstreicht Thorsten Kleine. "Sie verändert unser Verständnis des frühen Sonnensystems nachhaltig."

Die Arbeit entstand im Rahmen des Sonderforschungsbereichs/Transregio (TRR) 170 "Late accretion onto terrestrial planets" ("Spätes Wachstum erdähnlicher Planeten") an der WWU Münster und wurde von der Deutschen Forschungsgemeinschaft sowie dem europäischen Forschungsrat (ERC) unterstützt.

Originalpublikation:

T.S. Kruijer, C. Burkhardt, G. Budde and T. Kleine (2017): Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proceedings of the National Academy of Science of the United States of America (Early Edition); doi:10.1073/pnas.1704461114

Weitere Informationen:

http://www.uni-muenster.de/Planetology/ifp/personen/kleine_thorsten/profil.shtml Prof. Thorsten Kleine (Professur für Experimentelle und Analytische Planetologie) an der WWU Münster

Dr. Christina Heimken | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-muenster.de/

Weitere Berichte zu: Erdmassen Jupiter Mars Meteoriten Planet Sonnensystem Umlaufbahn

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Maschinelles Lernen im Quantenlabor
19.01.2018 | Universität Innsbruck

nachricht Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
17.01.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie