Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

JLU-Physiker untersuchen Elemententstehung in Sternen

30.03.2011
Präzisionsmassenmessungen liefern wichtige Informationen über die Nukleosynthese in Röntgenstrahlungsausbrüchen

Eine der Grundfragen der modernen Astrophysik betrifft die Synthese der chemischen Elemente, aus denen die Welt besteht: wann, wo und wie wurden sie gebildet? Heute weiß man, dass die Nukleosynthese im Innern von Sternen oder bei Sternexplosionen stattfindet.

Die leichteren Elemente bis zum Eisen entstehen durch die Verschmelzung leichterer Atomkerne, wobei Energie freigesetzt wird, die die Sterne zum Leuchten anregt. Die schweren Elemente jenseits von Eisen werden hauptsächlich durch Neutroneneinfangreaktionen erzeugt. Ein kleiner Teil (etwa ein Prozent) dieser Atomkerne wird allerdings durch Protoneneinfangreaktionen beziehungsweise die Abspaltung von Neutronen erzeugt (sogenannte p-Nuklide).

Diese Prozesse finden in besonders heißen Regionen statt, beispielsweise auf der Oberfläche von Neutronensternen, auf die aufgrund der Gravitationskraft Materie von benachbarten Riesensternen (sogenannten „roten Riesen") überströmt. Wurde genügend Material gesammelt und verdichtet, kann es zu einer thermonuklearen Explosion kommen, in der der sogenannte rp-Nukleosyntheseprozess zündet und die p-Nuklide entstehen. Da bei diesen Explosionen intensives Röntgenlicht ausgesandt wird, spricht man auch von einem Röntgenstrahlungsausbruch.

Damit Astrophysiker diesen Nukleosyntheseprozess zuverlässig simulieren und verstehen können, brauchen sie Informationen aus astronomischen Beobachtungen (in denen eine solche Explosion aufgezeichnet wurde) und Daten über fundamentale Eigenschaften der Atomkerne, wie zum Beispiel deren Lebensdauer oder Masse. Für die Massenwerte werden extrem genaue Daten benötigt, mit Unsicherheiten, die weniger als etwa ein Teil in zehn Millionen betragen. Dieses Verhältnis entspricht etwa dem Tausendstel des Durchmessers eines Haares im Vergleich zur Größe eines Menschen. Mit dem Massenspektrometer SHIPTRAP am GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt werden Massenmessungen mit diesen Präzision durchgeführt. Dort gelang nun einer internationalen Arbeitsgruppe unter Federführung von Kernphysikern der Justus-Liebig-Universität Gießen und der GSI Darmstadt erstmalig die direkte Massenmessung von besonderen exotischen Kernen auf dem rp-Prozess-Pfad. Überraschenderweise zeigen die Messergebnisse ungewöhnlich große Abweichungen von den bisher angenommenen Werten: Es wurden Abweichungen gefunden, die bis zu sechs Mal größer als die vorher angenommenen Unsicherheiten sind.

Die Frage, welchen Einfluss die neuen Daten auf das Verständnis der Nukleosynthese im rp-Prozess haben, wurde in einer internationalen Zusammenarbeit mit Astrophysikern untersucht. Zurzeit nimmt man an, dass der rp-Prozess, ausgehend von leichten Atomkernen in dem Bereich von sehr protonenreichen Kernen bis etwa zum Element Zinn verläuft. Hier könnte der Prozess zu einem Ende kommen, da die gebildeten Kerne durch alfa-Zerfall (einer Form von Radioaktivität) zu leichteren Elementen zerfallen und auf diese Weise ein nicht zu durchbrechender Kreislauf entsteht, ein sogenannter alfa-Zyklus, wodurch keine schwereren Elemente gebildet werden können. Die neuen Massenwerte zeigen, dass solch ein alfa-Zyklus energetisch tatsächlich möglich ist. Damit lassen sich die Ausbeuten der chemischen Elemente im rp-Prozess berechnen und mit den beobachteten Häufigkeiten vergleichen. Weiterhin gewinnen die Astrophysiker mit solchen Daten Einblick in die physikalischen Bedingungen, die bei diesem Prozess der Nukleosynthese vorherrschen: vermutlich handelt es sich um Temperaturen von mindestens einer Milliarde Grad Celsius.

Titel der Publikation
E. Haettner, D. Ackermann, G. Audi, K. Blaum, M. Block, S. Eliseev, T. Fleckenstein, F. Herfurth, F.P. Heßberger, S. Hofmann, J. Ketelaer, J. Ketter, H.J. Kluge, G. Marx, M. Mazzocco, Yu.N. Novikov, W.R. Plaß, S. Rahaman, T. Rauscher, D. Rodriguez, H. Schatz, C. Scheidenberger, L. Schweikhard,
B. Sun, P.G. Thirolf, G. Vorobjev, M. Wang, C. Weber, Mass Measurements of Very Neutron-Deficient Mo and Tc Isotopes and Their Impact on rp Process Nucleosynthesis, Phys. Rev. Lett. 106 (2011) 122501.

DOI: 10.1103/PhysRevLett.106.122501

Zu dieser Veröffentlichung ist ein "Viewpoint in Physics" von J. Dilling und C. Ruiz erschienen:

http://physics.aps.org/viewpoint-for/10.1103/PhysRevLett.106.122501

Kontakt
Dr. Wolfgang Plaß, II. Physikalisches Institut
Heinrich-Buff-Ring 16, 35392 Gießen
Telefon: 0641 99- 33253

Christina Lott | idw
Weitere Informationen:
http://www.uni-giessen.de/
http://physics.aps.org/viewpoint-for/10.1103/PhysRevLett.106.122501

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise