Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Jenseits der Erde

03.07.2012
Einer Gruppe von Wissenschaftlern am Bonner MPIfR und dem Astro Space Center in Moskau ist es zum ersten Mal gelungen, mit Hilfe des Software-Korrelationsrechners DiFX interferometrische Signale oder "fringes" zwischen dem 100-m-Radioteleskop Effelsberg und dem weltraumgebundenen Satelliten-Radioteleskop Spektr-R des RadioAstron-Projekts zu erhalten.
Damit wurden Beobachtungen bei der höchsten überhaupt möglichen Winkelauflösung in der Astronomie durchgeführt, gleichzeitig mit zwei Radioteleskopen in einem Abstand von mehr als 300000 Kilometern. Die beiden Teleskope waren auf BL Lacertae gerichtet, den Kern einer aktiven Galaxie in ca. 900 Millionen Lichtjahren Entfernung.

RadioAstron ist ein internationales Projekt zur Durchführung von VLBI ("Very Long Baseline-Interferometrie") im Weltraum. Es wird vom russischen "Astro Space Center" (ASC) in Moskau geleitet; die Beobachtungen erfolgen über ein 10-m-Satelliten-Radioteleskop an Bord des russischen Satelliten Spektr-R. Der Satellit wurde im Juli 2011 gestartet und umkreist die Erde auf einer elliptischen Umlaufbahn mit einem maximalen Abstand von 350000 Kilometern. Das Projekt kombiniert die Satellitendaten mit Beobachtungen von erdgebundenen Radioteleskopen und erreicht damit extrem hohe Winkelauflösungen - sie entsprechen tatsächlich denen eines Einzelteleskops von der Größe des Abstands zwischen Erde und Mond! RadioAstron wird es ermöglichen, eine Reihe von aufregenden wissenschaftlichen Projekten anzugehen. Dazu gehören die Teilchenbeschleunigung in der Umgebung von extrem massereichen Schwarzen Löchern in den Zentren von aktiven Galaxien, aber auch Neutronensterne und Pulsare, Dunkle Materie und Dunkle Energie.

Die interferometrische Beobachtungstechnik in der Radioastronomie, die im RadioAstron-Projekt zum Tragen kommt, basiert auf jeweils zwei Radioteleskopen, die gleichzeitig die Radiosignale einer bestimmten Quelle am Himmel aufzeichnen. Die Signale werden dann in einem Prozess, den man "Korrelation" nennt, elektronisch miteinander verglichen. Der Vorgang entspricht dem Doppelspalt-Experiment im Physik-Praktikum, wobei eine Reihe von sinusförmigen Helligkeitsänderungen als Funktion der Richtung auftreten. Diese Signale werden in der Radioastronomie als "fringes" bezeichnet. Je größer der Abstand zwischen den beiden Teleskopen ist, desto genauer kann man die Position der Quelle am Himmel aus den Messungen ableiten.

Da durch die Trägerrakete Größe und Gewicht eines Satelliten eingeschränkt sind, musste der Durchmesser des Teleskopspiegels im RadioAstron-Projekt auf 10 m begrenzt werden. Das Teleskop ist durch die vergleichweise geringe Größe nicht sehr empfindlich für die Aufnahme von sehr schwachen Radiosignalen. Dadurch wird die Zusammenarbeit mit dem MPIfR in Bonn extrem wichtig. Das Bonner Institut betreibt das 100-m-Radioteleskop bei Bad Münstereifel-Effelsberg, das als sehr großes und empfindliches Radioteleskop einen begehrter Partner für diese Art von Interferometrie-Experimenten darstellt.

Erste interferometrische Signale oder "fringes" im Rahmen des RadioAstron-Projekts konnten bereits Ende 2011 aufgezeichnet werden, aus Beobachtungen ebenfalls zusammen mit dem 100-m-Radioteleskop, die am Korrelator des "Astro Space Center" in Moskau ausgewertet wurden. Die hier beschriebenen Beobachtungen sind auf BL Lac gerichtet, den Kern einer aktiven Galaxie im Sternbild Lacerta (Eidechse) in einer Entfernung von ca. 900 Millionen Lichtjahren. Mit starker Variabilität und deutlicher Polarisation in optischen Wellenlängen stellt BL Lac den Prototyp für eine ganze Klasse von Galaxien mit aktiven Galaxienkernen ("Active Galactic Nuclei", AGN) dar.

Die Abbildung zeigt ein Bild der ersten Detektion von BL Lac in interferometrischen Beobachtungen mit dem 100-m-Radioteleskop und dem Satellitenteleskop von RadioAstron, die mit dem neuen Korrelatorsystem am MPIfR in Bonn ausgewertet wurden. Die unterschiedlichen Farben zeigen die Intensität des gemessenen interferometrischen Signals.

"Ein wichtiger neuer Aspekt dieser Analyse liegt darin, dass wir die Daten nicht wie bisher mit einem Hardware-Korrelator auswerten, sondern mit dem DiFX-Software-Korrelator, der auf den VLBI-Computerstationen in unserem Institut in Bonn zum Einsatz kommt", sagt Anton Zensus, Direktor am MPIfR. "Unsere Wissenschaftler in Bonn haben in Zusammenarbeit mit den Experten von RadioAstron den Programmcode des DiFX-Softwarekorrelators so umgeschrieben, dass er auch für die Auswertung von interferometrischen Satellitenbeobachtungen, also Weltraum-VLBI, eingesetzt werden kann." Normalerweise sind VLBI-Beobachtungen auf erdgebundene Radioteleskope beschränkt. Die Software musste nun so umgeschrieben werden, dass das Programm die Bewegungen des Satelliten im Orbit miteinbezieht und ausserdem den unterschiedlichen Ablauf der Zeit auf der Erde und im Weltraum berücksichtigt. Das sind winzige Unterschiede auf der Basis von Vorhersagen der Allgemeinen Relativitätstheorie, die aber entscheidend für die Entdeckung von interferometrischen Signalen zwischen beiden Teleskopen sind. Der DiFX-Korrelator ist ein offenes Software-Projekt, an dem eine Reihe von Radioastronomen und Geodäten aus unterschiedlichen Ländern beteiligt sind. Sie kommen aus Australien, wo dieses Projekt ursprünglich entwickelt wurde, aus Europa und aus den Vereinigten Staaten. Damit wird es nun möglich, das RadioAstron-Projekt mit einer Reihe von erdgebundenen Radioteleskopen zu verbinden und weltweit mit radioastronomischen Instituten zusammenzuarbeiten.

Ein weiterer großer Vorteil der Verarbeitung von RadioAstron-Daten mit dem DiFX-Korrelator liegt darin, dass die normalerweise zum Einsatz kommenden Programme zur Analyse interferometrischer Daten das Datenformat von DiFX erkennen und damit eine unmittelbare Weiterverarbeitung der Daten im jeweils bevorzugten Software-Paket der Wissenschaftler möglich wird.

"Das ist eine aufregende neue Entwicklung für die RadioAstron-Mission, damit wird die erfolgreiche Weiterverarbeitung und Analyse der Daten im astronomischen und physikalischen Sinne möglich", sagt James Anderson vom Max-Planck-Institut für Radioastronomie. "Wir können jetzt anfangen, Radiobilder unserer Forschungsobjekte bei Auflösungen im Mikrobogensekundenbereich zu erstellen, und das ist etwas, wozu wir bisher noch nicht in der Lage waren."

Dr. Andrei Lobanov,
Max-Planck-Institut für Radioastronomie.
Fon: +49(0)228-525-191
E-mail: alobanov@mpifr-bonn.mpg.de

Dr. James Anderson,
Max-Planck-Institut für Radioastronomie.
Fon: +49(0)228-525-356
E-mail: anderson@mpifr-bonn.mpg.de

Prof. Dr. Anton Zensus,
Direktor und Leiter der Forschungsgruppe "Radioastronomie / VLBI",
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49(0)228-525-378
E-mail: azensus@mpifr-bonn.mpg.de

Norbert Junkes | Max-Planck-Institut
Weitere Informationen:
http://www.mpifr-bonn.mpg.de/public/pr/pr-radioastron2012-dt.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor
23.02.2017 | Universität Bayreuth

nachricht Kühler Zwerg und die sieben Planeten
23.02.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie