Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Jenseits des absoluten Nullpunkts: heißer als unendlich heiß

09.12.2010
Kölner Physiker zeigen, wie man Atome im Laser fängt und in einen paradoxen Zustand versetzt

Heißer als unendlich heiß – kälter als absolut kalt: Kann es das gleichzeitig geben? Normalerweise liegt der absolute Nullpunkt bei Minus 273,15 Grad Celsius. Doch negative absolute Temperaturen sind unter gewissen Bedingungen möglich. Der Kölner Physiker Professor Achim Rosch schlägt zusammen mit seinen Kollegen Akos Rapp und Stephan Mandt eine neue Methode vor, Atome unter den absoluten Nullpunkt zu bringen.

Die Wissenschaftler beschreiben ihren Ansatz in einem Aufsatz in den Physical Review Letters: Die theoretischen Physiker beschreiben, wie man dazu Atome in der stehenden Welle eines Lasers fangen muss, einem sogenannten optischen Gitter. Ihr Vorschlag ist, diese Atome dann mit einer Kraft auseinander zu ziehen. Durch dieses neue Vorgehen werden die Atome in einem höheren energetischen Zustand gefangen. Sie erreichen eine negative absolute Temperatur, jenseits von Minus 273,15 Grad Celsius.

Die paradoxe Folge davon: Brächte man sie mit einem anderen Atom in Verbindung, würde immer Wärme von ihnen ausgehen, egal wie warm das andere Teilchen ist. Sie sind immer heißer als heiß, sogar heißer als unendlich heiß. Die Quantenphysik, die Achim Rosch betreibt, hat etwas von Magie. Die physikalischen Gesetze, die den normalen Menschen bekannt sind, scheinen außer Kraft gesetzt. „Man muss sich auch als Physiker daran gewöhnen, über negative absolute Temperaturen nachzudenken“, gibt der Wissenschaftler zu. „Viel funktioniert dabei gegen die menschliche Intuition.“ Denn normalerweise sind Temperaturen immer positiv. Der absolute Nullpunkt der klassischen Physik liegt bei Minus 273,15 Grad Celsius – Null Grad auf der Kelvin-Skala.

Und wie Temperatur hier funktioniert, das weiß die Physik schon seit langem: Für Atome in diesem positiven Temperaturbereich gilt, dass atomare Zustände mit niedriger Energie wahrscheinlicher sind als Zustände mit höherer Energie. Denn um ein Atom zu erwärmen oder es zu beschleunigen, muss man erst einmal Energie zuführen. Passiert dies nicht, so bleiben die Atome in ihrem niedrigeren energetischen Zustand, der damit auch der wahrscheinlichere ist. Rosch nennt ein bekanntes Beispiel eines solchen Systems: „ Luft oben auf einem Berg ist dünner ist als unten, denn um hoch auf den Berg zu kommen, benötigt man auch mehr Energie. Dort gibt es weniger Luft, die Zustände mit hoher Energie sind weniger wahrscheinlich“, so Professor Rosch.

Doch jenseits des absoluten Nullpunkts gilt das Gegenteil. Negative Temperaturen bedeuten, dass Zustände mit höherer Energie wahrscheinlicher sind als Zustände mit niedriger Energie. „Die Gesetze der Thermodynamik erlauben erst einmal beides“, erläutert Professor Rosch. „Voraussetzung für ein System mit Temperaturen jenseits des absoluten Nullpunkts ist allerdings, dass es darin so etwas wie eine maximale Energie gibt.“ Und das ist der Knackpunkt des vorgeschlagenen Experiments. Denn in allen Systemen gibt es eine minimale Energie – eine Untergrenze. Doch normalerweise ist die Menge von Energie, die ein System aufnehmen kann unendlich, denn man kann ein Atom immer weiter beschleunigen. Damit nimmt es immer mehr Energie auf. Ein System also ohne Obergrenze, so wie die Luft aus dem Beispiel auf der Bergspitze die Möglichkeit hat, bei Energieaufnahme bis ins Weltall zu diffundieren. Einen Zustand mit maximaler Energie gibt es dabei nicht.

Um ein System mit fester energetischer Obergrenze, mit maximaler Energie zu schaffen, müssen die Physiker das System „deckeln“. „Die einzige Chance, negative Temperatur zu bekommen, ist dafür zu sorgen, dass die Teilchen nicht schneller und schneller werden“, so Rosch. Dafür muss man einzelne Atome in der stehenden Welle eines Lasers einfangen, einem sogenannten optischen Gitter. Stehende Wellen werden erzeugt, indem ein Laser so reflektiert wird, dass sich die gegenläufigen Wellen gleicher Frequenz und Amplitude überlagern. „Wenn jetzt das Atom in der stehenden Welle ist und gleichzeitig beschleunigt, dann wird es wieder zurückgeworfen“, so Rosch. Das System ist gefesselt, eine Obergrenze an möglicher Energie festgelegt. „Damit hat man dann ein Maximum an kinetischer Energie“, so Rosch. Die Fesselung der Atome im Laserstrahl ist die Grundlage der Idee der theoretischen Physiker. Doch wie erzeugt man jetzt die negativen Temperaturen? Dazu müssen die Atome ja in einen Zustand mit höherer Energie versetzt werden. Die Kölner Physiker schlagen vor, eine Kraft auf die Atome einwirken zu lassen, die sie auseinanderzieht. Dadurch müssten die Teilchen eigentlich beschleunigen. Sie folgen dabei einer Idee, die der niederländische Physiker Alan Mosk im Jahr 2005 vorschlug.

„Die Atome können aber wegen des festgelegten Maximums an kinetischer Energie nicht auseinanderfliegen“, erklärt Rosch. Das System ist energetisch nach oben hin geschlossen und erlaubt keine Bewegung. Die Atome nehmen aber durch die Behandlung trotzdem einen höheren energetischen Zustand an. Das Resultat: „Dann gibt es negative Temperaturen“, erklärt der Physiker. „Man steuert auf einen Zustand zu, in dem Zustände mit hoher Energie wahrscheinlicher sind als Zustände mit niedriger Energie.“

Sind negative Temperaturen nun kälter als kalt? Nein, im Gegenteil: Sie sind sogar heißer als unendlich heiß. Denn für alle positiven, „normalen“ Temperaturen gilt: Die Zustände mit niedriger Energie sind mehr besetzt, als die mit hoher Energie. Bei negativen absoluten Temperaturen ist das aber umgekehrt, so Rosch: „Wenn ich Zustände mit höherer Energie mehr besetze, dann heißt das, dass die Atome eine höhere Temperatur haben als selbst ein unendlich heißer Zustand.“ Bringt man ein System mit negativer absoluter Temperatur in thermischen Kontakt mit einem System mit einer beliebigen positiven Temperatur, dann fließt die Energie immer von den negativen Temperaturen zu den positiven Temperaturen. „Das Atom ist heißer als unendlich heiß: Der Wärmefluss geht immer in Richtung positiver Temperatur“, so Achim Rosch. Experimentalphysiker in München unter Leitung von Professor Immanuel Bloch vom Max-Planck-Institut für Quantenoptik in Garching wollen das Experiment, das sich die Kölner ausgedacht haben, umsetzen. Wichtig war den theoretischen Physikern in Köln eine möglichst elegante Umsetzung des Versuchs. Denn neben den negativen absoluten Temperaturen soll es im Experiment gelingen, die Atome im Laser in ein Bose-Einstein-Kondensat zu verwandeln, ein quantenmechanischer Aggregatzustand der Materie, in dem alle Atome den gleichen Zustand annehmen.

Wenn das Experiment gelingt, werden sich die negativen Temperaturen einfach nachweisen lassen: Die Physiker heben die Fesseln der Atome auf. Da diese alle denselben Impuls haben, fliegen sie in dergleichen Geschwindigkeit in dieselbe Richtung. „Die eigentliche Arbeit für uns war, abzuschätzen, ob man das unter experimentellen Bedingungen erreichen kann und wie lange es dauert, bis sich so ein neuer Zustand eingestellt hat“, resümiert Rosch seine Arbeit. Wie lange wird das dauern? „Sehr langsam“, erwidert der Wissenschaftler. „Das können Sie in Millisekunden messen.“ Eine Ewigkeit in der Welt der Atome.

Bei Rückfragen: Professor Achim Rosch, 0221/470-4994, rosch@thp.Uni-Koeln.DE
Internet: http://www.thp.uni-koeln.de/rosch/
http://prl.aps.org/abstract/PRL/v105/i22/e220405
Verantwortlich: Dr. Patrick Honecker

Gabriele Rutzen | idw
Weitere Informationen:
http://www.uni-koeln.de

Weitere Berichte zu: Atom Maximum Nullpunkt Obergrenze Physik Teilchen Temperatur Welle laser system periodische Gitter

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise