Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein janusköpfiger Neutronenstern

25.01.2013
Einem internationalen Forschungsteam geleitet von niederländischen Astronomen ist unter Mitarbeit einer ganzen Reihe von Wissenschaftlern des Max-Planck-Instituts für Radioastronomie (MPIfR) in Bonn eine aufregende Entdeckung gelungen, bei der es um den Mechanismus geht, mit dem Pulsare ihre Strahlung aussenden.

Die Abstrahlung von Röntgen- und Radiowellen bei diesen schnell rotierenden Neutronensternen kann sich nämlich dramatisch ändern, in Sekundenbruchteilen simultan bei beiden Frequenzen und in einer Weise, die mit gängigen Theorien bis jetzt noch nicht erklärt werden kann. Die Beobachtungen lassen auf schnelle Variationen der gesamten Magnetosphäre des Pulsars schließen.


Künstlerische Darstellung eines Pulsars mit intensiver, stark gebündelter Radiostrahlung aus Richtung der magnetischen Pole des Pulsars, in seiner „radiohellen“ Phase.
Bildrechte: ESA / ATG medialab


Künstlerische Darstellung eines Pulsars mit schwächerer Radiostrahlung aus Richtung der magnetischen Pole des Pulsars, in seiner „radioschwachen“ Phase.
Bildrechte: ESA / ATG medialab

Pulsare sind kompakte schnell rotierende Sterne von nur etwa 20 km Durchmesser (die Größe einer kleineren Stadt) mit einer Gesamtmasse, die ungefähr der Masse unserer Sonne entspricht. Sie haben ein starkes Magnetfeld, ungefähr eine Million mal stärker als alle Magnetfelder, die in irdischen Laboratorien künstlich erzeugt werden können. Ein Pulsar gibt seine Strahlung sehr stark gebündelt ab. Wenn der Strahlenkegel des Pulsars im Lauf seiner Rotation über die Erde streift, wird ein kurzdauernder Strahlungspuls beobachtet, ähnlich wie bei einem Leuchtturm.

Einige Pulsare geben Strahlung über die gesamte Breite des elektromagnetischen Spektrums ab und können sowohl im Röntgen- als auch im Radiobereich beobachtet werden. Obwohl die ersten Pulsare bereits vor über 40 Jahren entdeckt wurden, ist der Mechanismus, mit dem sie ihre Strahlung abgeben, nach wie vor nicht genau bekannt.

Man weiß seit einiger Zeit, dass Pulsare im Radiobereich im Verhalten zwischen zwei (oder sogar mehr) unterschiedlichen Zuständen sehr schnell hin- und herspringen können, wobei sich sowohl die Form als auch die Intensität ihrer Radiopulse ändert. Der Zeitpunkt des Umspringens ist dabei nicht vorhersehbar und kann sehr plötzlich (oft sogar innerhalb einer einzelnen Pulsperiode) auftreten. Aus Daten von Satellitenteleskopen ist bekannt, dass eine Handvoll Radiopulsare auch bei Röntgenfrequenzen nachgewiesen werden können. Das Röntgensignal ist allerdings so schwach, dass bisher nichts über eine Variabilität im Röntgenbereich bekannt ist – könnte es sein, dass das Umspringen auch für die Röntgendaten gilt?

Der Augenblick des Umspringens

Die Wissenschaftler haben einen ganz bestimmten Pulsar mit der Bezeichnung PSR B0943+10 untersucht - einer der ersten entdeckten Pulsare überhaupt. Die Signale dieses Pulsars ändern alle paar Stunden ihre Form und Helligkeit, und diese Änderungen ereignen sich innerhalb von nur einer Sekunde. Es ist als ob der Pulsar zwei ganz unterschiedliche Persönlichkeiten hätte. Da PSR B0943+10 einer der wenigen Pulsare ist, bei denen auch Röntgenstrahlung entdeckt wurde, sollte die Untersuchung des Röntgenverhaltens während der Änderung in der Radiostrahlung Aufschluss geben können über die Natur des Strahlungsprozesses in diesen Pulsaren.

Da der Pulsar nur schwache Röntgensignale aussendet, hat das Forschungsteam Beobachtungen mit dem empfindlichsten Röntgenteleskop überhaupt durchgeführt, nämlich mit dem von der europäischen Raumfahrtorganisation ESA finanzierten Röntgensatelliten XMM-Newton. Die Beobachtungen erfolgten über insgesamt sechs Intervalle von jeweils sechs Stunden. Um die genauen Zeiten der Änderung im Radioverhalten des Pulsars zu identifizieren, wurden gleichzeitig Beobachtungen mit den zwei weltweit empfindlichsten Radioteleskope für den Meter-Wellenlängenbereich durchgeführt, dem „Giant Meterwave Radio Telescope“ (GMRT) in Indien und dem europäischen „LOw Frequency ARay“ (LOFAR).

Zwei Zustände auch im Röntgenbereich

Es gab nun ein völlig überraschendes Ergebnis. Die Röntgensignale ändern in der Tat ihr Verhalten synchron mit den Radiosignalen, wie vielleicht auch im Vorfeld zu erwarten. Aber das Ganze geschieht antizyklisch – wenn die Radiopulse stark sind, ist die Röntgenstrahlung schwach. Und bei schwächerer Intensität der Pulse im Radiobereich wird das Röntgensignal entsprechend stärker. „Zu unserer großen Überraschung mussten wir feststellen, dass beim Rückgang der Radiohelligkeit der Signale auf die Hälfte ihre Röntgenhelligkeit auf das Doppelte anstieg“, sagt Wim Hermsen, der Leiter des Forschungsprojekts. Und nur dann tritt die Röntgenstrahlung auch in gepulster Form auf. Lucien Kuiper, der die Röntgendaten von XMM-Newton gründlich geprüft hat, zieht daraus den Schluss, dass ein nur zeitweise auftretender „Hotspot“ nahe am magnetischen Pol entsprechend den Zustandsänderungen in der Emission des Pulsars an- und ausgeschaltet wird.

Am meisten überrascht dabei, dass die Umwandlung des Erscheinungsbilds bei dem Pulsar innerhalb von Sekunden erfolgt, während er danach für einige Stunden stabil in dem neuen Zustand verharrt. „Warum der Pulsar nun diese dramatischen und nicht vorherberechenbaren Änderungen vollführt, können wir durch die bekannten Theorien nicht erklären“, sagt Aris Noutsos vom MPIfR, ein Mitglied der „Pulsar Working Group“. „Es spricht aber stark für sehr schnell stattfindende Änderungen in der gesamten Magnetosphäre des Pulsars.“

Ein unerwartetes Ergebnis

45 Jahre nach der Entdeckung der ersten Neutronensterne unterstützt das völlig unerwartete chamäleonhafte Verhalten des Radiopulsars PSR B0943+10 die Erforschung von grundlegenden physikalischen Prozessen unter derart extremen Bedingungen, wie sie in den Magnetosphären von Pulsaren auftreten.

Wim Hermsen und seine Kollegen haben zusätzliche Beobachtungszeit mit dem Röntgensatelliten XMM-Newton erhalten. Durch die Kombination von Röntgenbeobachtungen mit Radiobeobachtungen mit einer Reihe von Radioteleskopen wie Westerbork, GMRT, Effelsberg und Jodrell Bank werden sie in der Lage sein, den Pulsar PSR B1822-09 mit ganz ähnlichen Eigenschaften auch simultan in Radio- und Röntgenwellenlängen zu studieren. Dieser Pulsar zeigt in Radiowellenlängen ebenfalls schnelle Übergänge („flips“) in einen anderen Zustand auf.

Das Forschungsteam

Das Forschungsteam wird angeführt von Wim Hermsen vom Niederländisches Institut für Weltraumforschung (SRON) & Universität Amsterdam (UvA) und seinen Kollegen Lucien Kuiper und Jelle de Plaa (SRON), Jason Hessels und Joeri van Leeuwen (ASTRON, UvA), Dipanjan Mitra (NCFRA-TIFR, Pune, Indien), Joanna Rankin (Universität Vermont, Burlington, VS), Ben Stappers (Universität Manchester, Großbritannien) und Geoffrey Wright (Universität Sussex, Großbritannien).

Darüber hinaus sind zwei Arbeitsgruppen mit einer Reihe von Autoren in der Originalveröffentlichung an dem Projekt beteiligt. Im Rahmen der „Pulsar Working Group“ haben Evan Keane, Michael Kramer, Masaya Kuniyoshi, Aris Noutsos und Charlotte Sobey vom Max-Planck-Institut für Radioastronomie (MPIfR) in Bonn daran mitgearbeitet, vom Internationalen LOFAR-Teleskop („Low Frequency Array“) waren unter anderem Andreas Horneffer, Wolfgang Reich und Olaf Wucknitz vom MPIfR mit dabei, sowie Heino Falcke (Radboud-Universität Nijmegen, ASTRON & MPIfR). Zum Zeitpunkt der Beobachtungen war das LOFAR-Teleskop noch in der Testphase.

Die Ergebnisse dieser Untersuchung erscheinen unter dem Titel „Synchronous X-ray and Radio Mode Switches: a Rapid Transformation of the Pulsar Magnetosphere“ (W. Hermsen et al.) in der aktuellen Ausgabe des Wissenschaftsjournals „Science“.

Lokaler Kontakt:

Dr. Aristeidis Noutsos,
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49-228-525-324
E-mail: anoutsos@mpifr-bonn.mpg.de
Dr. Olaf Wucknitz,
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49-228-525-481
E-mail: wucknitz@mpifr-bonn.mpg.de
Dr. Norbert Junkes
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Radioastronomie
Fon: +49 228 525 399
Email: njunkes@mpifr-bonn.mpg.de
Share on Facebook
Weitere Informationen:
http://www3.mpifr-bonn.mpg.de/div/fundamental/
- Radioastronomische Fundamentalphysik
http://www.astron.nl/
- ASTRON
http://www.jb.man.ac.uk/research/pulsar/Resources/epn/
- European Pulsar Network
http://www3.mpifr-bonn.mpg.de/div/lofar/
- LOFAR in Deutschland

Norbert Junkes | Max-Planck-Institut
Weitere Informationen:
http://www.mpifr-bonn.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Klein bestimmt über groß?
29.03.2017 | Max-Planck-Institut für Dynamik und Selbstorganisation

nachricht Quantenkommunikation: Wie man das Rauschen überlistet
29.03.2017 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten