Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein janusköpfiger Neutronenstern

25.01.2013
Einem internationalen Forschungsteam geleitet von niederländischen Astronomen ist unter Mitarbeit einer ganzen Reihe von Wissenschaftlern des Max-Planck-Instituts für Radioastronomie (MPIfR) in Bonn eine aufregende Entdeckung gelungen, bei der es um den Mechanismus geht, mit dem Pulsare ihre Strahlung aussenden.

Die Abstrahlung von Röntgen- und Radiowellen bei diesen schnell rotierenden Neutronensternen kann sich nämlich dramatisch ändern, in Sekundenbruchteilen simultan bei beiden Frequenzen und in einer Weise, die mit gängigen Theorien bis jetzt noch nicht erklärt werden kann. Die Beobachtungen lassen auf schnelle Variationen der gesamten Magnetosphäre des Pulsars schließen.


Künstlerische Darstellung eines Pulsars mit intensiver, stark gebündelter Radiostrahlung aus Richtung der magnetischen Pole des Pulsars, in seiner „radiohellen“ Phase.
Bildrechte: ESA / ATG medialab


Künstlerische Darstellung eines Pulsars mit schwächerer Radiostrahlung aus Richtung der magnetischen Pole des Pulsars, in seiner „radioschwachen“ Phase.
Bildrechte: ESA / ATG medialab

Pulsare sind kompakte schnell rotierende Sterne von nur etwa 20 km Durchmesser (die Größe einer kleineren Stadt) mit einer Gesamtmasse, die ungefähr der Masse unserer Sonne entspricht. Sie haben ein starkes Magnetfeld, ungefähr eine Million mal stärker als alle Magnetfelder, die in irdischen Laboratorien künstlich erzeugt werden können. Ein Pulsar gibt seine Strahlung sehr stark gebündelt ab. Wenn der Strahlenkegel des Pulsars im Lauf seiner Rotation über die Erde streift, wird ein kurzdauernder Strahlungspuls beobachtet, ähnlich wie bei einem Leuchtturm.

Einige Pulsare geben Strahlung über die gesamte Breite des elektromagnetischen Spektrums ab und können sowohl im Röntgen- als auch im Radiobereich beobachtet werden. Obwohl die ersten Pulsare bereits vor über 40 Jahren entdeckt wurden, ist der Mechanismus, mit dem sie ihre Strahlung abgeben, nach wie vor nicht genau bekannt.

Man weiß seit einiger Zeit, dass Pulsare im Radiobereich im Verhalten zwischen zwei (oder sogar mehr) unterschiedlichen Zuständen sehr schnell hin- und herspringen können, wobei sich sowohl die Form als auch die Intensität ihrer Radiopulse ändert. Der Zeitpunkt des Umspringens ist dabei nicht vorhersehbar und kann sehr plötzlich (oft sogar innerhalb einer einzelnen Pulsperiode) auftreten. Aus Daten von Satellitenteleskopen ist bekannt, dass eine Handvoll Radiopulsare auch bei Röntgenfrequenzen nachgewiesen werden können. Das Röntgensignal ist allerdings so schwach, dass bisher nichts über eine Variabilität im Röntgenbereich bekannt ist – könnte es sein, dass das Umspringen auch für die Röntgendaten gilt?

Der Augenblick des Umspringens

Die Wissenschaftler haben einen ganz bestimmten Pulsar mit der Bezeichnung PSR B0943+10 untersucht - einer der ersten entdeckten Pulsare überhaupt. Die Signale dieses Pulsars ändern alle paar Stunden ihre Form und Helligkeit, und diese Änderungen ereignen sich innerhalb von nur einer Sekunde. Es ist als ob der Pulsar zwei ganz unterschiedliche Persönlichkeiten hätte. Da PSR B0943+10 einer der wenigen Pulsare ist, bei denen auch Röntgenstrahlung entdeckt wurde, sollte die Untersuchung des Röntgenverhaltens während der Änderung in der Radiostrahlung Aufschluss geben können über die Natur des Strahlungsprozesses in diesen Pulsaren.

Da der Pulsar nur schwache Röntgensignale aussendet, hat das Forschungsteam Beobachtungen mit dem empfindlichsten Röntgenteleskop überhaupt durchgeführt, nämlich mit dem von der europäischen Raumfahrtorganisation ESA finanzierten Röntgensatelliten XMM-Newton. Die Beobachtungen erfolgten über insgesamt sechs Intervalle von jeweils sechs Stunden. Um die genauen Zeiten der Änderung im Radioverhalten des Pulsars zu identifizieren, wurden gleichzeitig Beobachtungen mit den zwei weltweit empfindlichsten Radioteleskope für den Meter-Wellenlängenbereich durchgeführt, dem „Giant Meterwave Radio Telescope“ (GMRT) in Indien und dem europäischen „LOw Frequency ARay“ (LOFAR).

Zwei Zustände auch im Röntgenbereich

Es gab nun ein völlig überraschendes Ergebnis. Die Röntgensignale ändern in der Tat ihr Verhalten synchron mit den Radiosignalen, wie vielleicht auch im Vorfeld zu erwarten. Aber das Ganze geschieht antizyklisch – wenn die Radiopulse stark sind, ist die Röntgenstrahlung schwach. Und bei schwächerer Intensität der Pulse im Radiobereich wird das Röntgensignal entsprechend stärker. „Zu unserer großen Überraschung mussten wir feststellen, dass beim Rückgang der Radiohelligkeit der Signale auf die Hälfte ihre Röntgenhelligkeit auf das Doppelte anstieg“, sagt Wim Hermsen, der Leiter des Forschungsprojekts. Und nur dann tritt die Röntgenstrahlung auch in gepulster Form auf. Lucien Kuiper, der die Röntgendaten von XMM-Newton gründlich geprüft hat, zieht daraus den Schluss, dass ein nur zeitweise auftretender „Hotspot“ nahe am magnetischen Pol entsprechend den Zustandsänderungen in der Emission des Pulsars an- und ausgeschaltet wird.

Am meisten überrascht dabei, dass die Umwandlung des Erscheinungsbilds bei dem Pulsar innerhalb von Sekunden erfolgt, während er danach für einige Stunden stabil in dem neuen Zustand verharrt. „Warum der Pulsar nun diese dramatischen und nicht vorherberechenbaren Änderungen vollführt, können wir durch die bekannten Theorien nicht erklären“, sagt Aris Noutsos vom MPIfR, ein Mitglied der „Pulsar Working Group“. „Es spricht aber stark für sehr schnell stattfindende Änderungen in der gesamten Magnetosphäre des Pulsars.“

Ein unerwartetes Ergebnis

45 Jahre nach der Entdeckung der ersten Neutronensterne unterstützt das völlig unerwartete chamäleonhafte Verhalten des Radiopulsars PSR B0943+10 die Erforschung von grundlegenden physikalischen Prozessen unter derart extremen Bedingungen, wie sie in den Magnetosphären von Pulsaren auftreten.

Wim Hermsen und seine Kollegen haben zusätzliche Beobachtungszeit mit dem Röntgensatelliten XMM-Newton erhalten. Durch die Kombination von Röntgenbeobachtungen mit Radiobeobachtungen mit einer Reihe von Radioteleskopen wie Westerbork, GMRT, Effelsberg und Jodrell Bank werden sie in der Lage sein, den Pulsar PSR B1822-09 mit ganz ähnlichen Eigenschaften auch simultan in Radio- und Röntgenwellenlängen zu studieren. Dieser Pulsar zeigt in Radiowellenlängen ebenfalls schnelle Übergänge („flips“) in einen anderen Zustand auf.

Das Forschungsteam

Das Forschungsteam wird angeführt von Wim Hermsen vom Niederländisches Institut für Weltraumforschung (SRON) & Universität Amsterdam (UvA) und seinen Kollegen Lucien Kuiper und Jelle de Plaa (SRON), Jason Hessels und Joeri van Leeuwen (ASTRON, UvA), Dipanjan Mitra (NCFRA-TIFR, Pune, Indien), Joanna Rankin (Universität Vermont, Burlington, VS), Ben Stappers (Universität Manchester, Großbritannien) und Geoffrey Wright (Universität Sussex, Großbritannien).

Darüber hinaus sind zwei Arbeitsgruppen mit einer Reihe von Autoren in der Originalveröffentlichung an dem Projekt beteiligt. Im Rahmen der „Pulsar Working Group“ haben Evan Keane, Michael Kramer, Masaya Kuniyoshi, Aris Noutsos und Charlotte Sobey vom Max-Planck-Institut für Radioastronomie (MPIfR) in Bonn daran mitgearbeitet, vom Internationalen LOFAR-Teleskop („Low Frequency Array“) waren unter anderem Andreas Horneffer, Wolfgang Reich und Olaf Wucknitz vom MPIfR mit dabei, sowie Heino Falcke (Radboud-Universität Nijmegen, ASTRON & MPIfR). Zum Zeitpunkt der Beobachtungen war das LOFAR-Teleskop noch in der Testphase.

Die Ergebnisse dieser Untersuchung erscheinen unter dem Titel „Synchronous X-ray and Radio Mode Switches: a Rapid Transformation of the Pulsar Magnetosphere“ (W. Hermsen et al.) in der aktuellen Ausgabe des Wissenschaftsjournals „Science“.

Lokaler Kontakt:

Dr. Aristeidis Noutsos,
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49-228-525-324
E-mail: anoutsos@mpifr-bonn.mpg.de
Dr. Olaf Wucknitz,
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49-228-525-481
E-mail: wucknitz@mpifr-bonn.mpg.de
Dr. Norbert Junkes
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Radioastronomie
Fon: +49 228 525 399
Email: njunkes@mpifr-bonn.mpg.de
Share on Facebook
Weitere Informationen:
http://www3.mpifr-bonn.mpg.de/div/fundamental/
- Radioastronomische Fundamentalphysik
http://www.astron.nl/
- ASTRON
http://www.jb.man.ac.uk/research/pulsar/Resources/epn/
- European Pulsar Network
http://www3.mpifr-bonn.mpg.de/div/lofar/
- LOFAR in Deutschland

Norbert Junkes | Max-Planck-Institut
Weitere Informationen:
http://www.mpifr-bonn.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie