Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Jagd nach dem Schwächling

19.01.2011
Ein Experiment im Gran-Sasso-Massiv will die Bestandteile der Dunklen Materie auffinden: WIMP-Teilchen im Fokus

Das Spektrum der physikalischen Forschung an der Johannes Gutenberg-Universität Mainz (JGU) ist um ein bedeutendes Arbeitsfeld reicher: die direkte Suche nach Dunkler Materie. Mit der Berufung von Univ.-Prof. Dr. Uwe Oberlack im Sommer 2010 hat das Institut für Physik einen weltweit anerkannten Experten auf diesem Gebiet gewonnen. Er kann in Mainz an die Forschungsarbeiten zur indirekten Suche nach Dunkler Materie anknüpfen. Damit ist die JGU in die internationale Spitzengruppe zur Erforschung der Dunklen Materie aufgerückt.

Sie ist maßgeblich für die klumpige Verteilung der Materie im Universum: von Galaxien über Galaxienhaufen bis hin zu den größten uns bekannten Strukturen von Superhaufen und Filamenten, die große kosmische Leerräume wie Blasen in einem Schaumbad umgeben. Sie war die Wiege, in der sich Galaxien bereits früh ausbilden konnten. Sie umgibt und durchdringt unsere und andere Galaxien noch heute und hält sie zusammen, ist aber völlig unsichtbar. Wenig ist bisher über die Dunkle Materie bekannt, die knapp ein Viertel unseres Universums ausmacht. „Wir wissen vor allem, was Dunkle Materie nicht ist“, erklärt Uwe Oberlack, der vor seiner Rückkehr nach Deutschland zehn Jahre lang in den USA auf diesem Gebiet und in der Hochenergie-Astrophysik geforscht hat. „Dunkle Materie ist nicht einfach nur durchsichtig, sondern sie ist komplett verschieden von jeder Materieform, die wir bisher kennen.“ Oberlack war am Aufbau eines internationalen Forschungsprogramms, XENON, beteiligt, mit dem im italienischen Gran-Sasso-Massiv in einem unterirdischen Labor nach Bestandteilen der Dunklen Materie gesucht wird. Das derzeitige XENON100-Experiment ist eines von zwei weltweit führenden Experimenten zum Nachweis Dunkler Materie.

Die Erforschung der Dunklen Materie gehört zu den wichtigsten wissenschaftlichen Vorhaben des nächsten Jahrzehnts. Das Universum besteht zu 23 Prozent aus Dunkler Materie, während unsere normale, sichtbare Materie nur 4,6 Prozent beiträgt. Der größte Teil mit 72 Prozent besteht aus Dunkler Energie, die für die beschleunigte Expansion des Universums verantwortlich ist und über die noch weniger als über die Dunkle Materie bekannt ist.

Dass es Dunkle Materie überhaupt gibt, wurde Anfang der 1930er Jahre durch die Beobachtung von Galaxien in Galaxienhaufen postuliert: Sie bewegen sich viel zu schnell, als dass die Galaxienhaufen allein durch die Gravitation der sichtbaren Masse zusammengehalten würden. Später fand man einen ähnlichen Effekt in Spiralgalaxien. Eine andere Kraft müsste also für die hohe Rotationsgeschwindigkeit am Rande von Galaxien verantwortlich sein. Mittlerweile steht fest, dass es sich bei dieser Materie nicht um Quarks oder Elektronen handelt, die unsere Atome ausmachen. Auch andere Kandidaten wie Neutrinos scheiden weitgehend aus. „Wir vermuten heute, dass sich Dunkle Materie recht schnell nach dem Urknall gebildet hat“, so Oberlack. „Sie besteht wahrscheinlich aus neutralen, massiven Teilchen, die mit anderen Teilchen nur schwach wechselwirken.“ Diese WIMPs (weakly interacting massive particles) oder auch „Schwächlinge“ sind bisher nicht entdeckt worden.

Oberlack sucht sie zusammen mit einem Forscherteam aus 12 Instituten tief unter der Erde in einem Xenon-Detektor, der peinlich genau vor kosmischer Strahlung abgeschottet wird. Das auf minus 95 Grad abgekühlte, flüssige Xenon soll in den Laboratori Nazionali del Gran Sasso die WIMPs einfangen. Nach ersten Experimenten mit kleineren Detektoren sucht derzeit das XENON100-Experiment mit einer Masse von 62 kg und gegenüber dem Vorläufer-Experiment hundertfach verringertem Untergrund nach Dunkler Materie. Dieses Experiment soll die derzeitige Sensitivitätsgrenze um einen weiteren Faktor 15 verbessern und testet damit direkt einen erheblichen Anteil der theoretisch interessanten „Neutralinos“, einer WIMP-Art, die auf dem Konzept der Supersymmetrie beruht. Supersymmetrie oder SUSY ist eine postulierte neue Symmetrie der Natur, die erst bei hohen Teilchenenergien, etwa im frühen Universum oder in großen Beschleunigern wie dem LHC am CERN, erreicht würde.

Gestützt auf die erfolgreiche Datennahme mit XENON100, plant die XENON-Kollaboration bereits einen Detektor mit einer Masse von einer Tonne, um in drei Jahren nochmals um einen Faktor 50 bis 100 empfindlicher zu werden. Sind in der Tat Neutralinos die Teilchen der Dunklen Materie, so können sie in den nächsten Jahren im Labor nachgewiesen und einige ihrer physikalischen Eigenschaften könnten gemessen werden.

Die Arbeiten werden von der Alfried Krupp von Bohlen und Halbach-Stiftung im Rahmen des Programms „Rückkehr deutscher Wissenschaftler aus dem Ausland“ mit 100.000 Euro gefördert.

Weitere Informationen:
Univ.-Prof. Dr. Uwe Gerd Oberlack
Experimentelle Teilchen- und Astroteilchenphysik (ETAP)
Institut für Physik
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-25167
Fax +49 6131 39-25169
E-Mail: oberlack@uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.etap.physik.uni-mainz.de/487_ENG_HTML.php
http://www.uni-mainz.de/universitaet/40250.php
http://www.lngs.infn.it/home.htm

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantenverschränkung auf den Kopf gestellt
22.05.2018 | Universität Innsbruck

nachricht Kosmische Ravioli und Spätzle
22.05.2018 | Universität Bern

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt

Wie verleiht man Zellen neue Eigenschaften ohne ihren Stoffwechsel zu behindern? Ein Team der Technischen Universität München (TUM) und des Helmholtz Zentrums München veränderte Säugetierzellen so, dass sie künstliche Kompartimente bildeten, in denen räumlich abgesondert Reaktionen ablaufen konnten. Diese machten die Zellen tief im Gewebe sichtbar und mittels magnetischer Felder manipulierbar.

Prof. Gil Westmeyer, Professor für Molekulare Bildgebung an der TUM und Leiter einer Forschungsgruppe am Helmholtz Zentrum München, und sein Team haben dies...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Kosmische Ravioli und Spätzle

Die inneren Monde des Saturns sehen aus wie riesige Ravioli und Spätzle. Das enthüllten Bilder der Raumsonde Cassini. Nun konnten Forscher der Universität Bern erstmals zeigen, wie diese Monde entstanden sind. Die eigenartigen Formen sind eine natürliche Folge von Zusammenstössen zwischen kleinen Monden ähnlicher Grösse, wie Computersimulationen demonstrieren.

Als Martin Rubin, Astrophysiker an der Universität Bern, die Bilder der Saturnmonde Pan und Atlas im Internet sah, war er verblüfft. Die Nahaufnahmen der...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Raumschrott im Fokus

Das Astronomische Institut der Universität Bern (AIUB) hat sein Observatorium in Zimmerwald um zwei zusätzliche Kuppelbauten erweitert sowie eine Kuppel erneuert. Damit stehen nun sechs vollautomatisierte Teleskope zur Himmelsüberwachung zur Verfügung – insbesondere zur Detektion und Katalogisierung von Raumschrott. Unter dem Namen «Swiss Optical Ground Station and Geodynamics Observatory» erhält die Forschungsstation damit eine noch grössere internationale Bedeutung.

Am Nachmittag des 10. Februars 2009 stiess über Sibirien in einer Höhe von rund 800 Kilometern der aktive Telefoniesatellit Iridium 33 mit dem ausgedienten...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt

22.05.2018 | Biowissenschaften Chemie

Mikroskopie der Zukunft

22.05.2018 | Medizintechnik

Designerzellen: Künstliches Enzym kann Genschalter betätigen

22.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics