Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Jagd nach dem Schwächling

19.01.2011
Ein Experiment im Gran-Sasso-Massiv will die Bestandteile der Dunklen Materie auffinden: WIMP-Teilchen im Fokus

Das Spektrum der physikalischen Forschung an der Johannes Gutenberg-Universität Mainz (JGU) ist um ein bedeutendes Arbeitsfeld reicher: die direkte Suche nach Dunkler Materie. Mit der Berufung von Univ.-Prof. Dr. Uwe Oberlack im Sommer 2010 hat das Institut für Physik einen weltweit anerkannten Experten auf diesem Gebiet gewonnen. Er kann in Mainz an die Forschungsarbeiten zur indirekten Suche nach Dunkler Materie anknüpfen. Damit ist die JGU in die internationale Spitzengruppe zur Erforschung der Dunklen Materie aufgerückt.

Sie ist maßgeblich für die klumpige Verteilung der Materie im Universum: von Galaxien über Galaxienhaufen bis hin zu den größten uns bekannten Strukturen von Superhaufen und Filamenten, die große kosmische Leerräume wie Blasen in einem Schaumbad umgeben. Sie war die Wiege, in der sich Galaxien bereits früh ausbilden konnten. Sie umgibt und durchdringt unsere und andere Galaxien noch heute und hält sie zusammen, ist aber völlig unsichtbar. Wenig ist bisher über die Dunkle Materie bekannt, die knapp ein Viertel unseres Universums ausmacht. „Wir wissen vor allem, was Dunkle Materie nicht ist“, erklärt Uwe Oberlack, der vor seiner Rückkehr nach Deutschland zehn Jahre lang in den USA auf diesem Gebiet und in der Hochenergie-Astrophysik geforscht hat. „Dunkle Materie ist nicht einfach nur durchsichtig, sondern sie ist komplett verschieden von jeder Materieform, die wir bisher kennen.“ Oberlack war am Aufbau eines internationalen Forschungsprogramms, XENON, beteiligt, mit dem im italienischen Gran-Sasso-Massiv in einem unterirdischen Labor nach Bestandteilen der Dunklen Materie gesucht wird. Das derzeitige XENON100-Experiment ist eines von zwei weltweit führenden Experimenten zum Nachweis Dunkler Materie.

Die Erforschung der Dunklen Materie gehört zu den wichtigsten wissenschaftlichen Vorhaben des nächsten Jahrzehnts. Das Universum besteht zu 23 Prozent aus Dunkler Materie, während unsere normale, sichtbare Materie nur 4,6 Prozent beiträgt. Der größte Teil mit 72 Prozent besteht aus Dunkler Energie, die für die beschleunigte Expansion des Universums verantwortlich ist und über die noch weniger als über die Dunkle Materie bekannt ist.

Dass es Dunkle Materie überhaupt gibt, wurde Anfang der 1930er Jahre durch die Beobachtung von Galaxien in Galaxienhaufen postuliert: Sie bewegen sich viel zu schnell, als dass die Galaxienhaufen allein durch die Gravitation der sichtbaren Masse zusammengehalten würden. Später fand man einen ähnlichen Effekt in Spiralgalaxien. Eine andere Kraft müsste also für die hohe Rotationsgeschwindigkeit am Rande von Galaxien verantwortlich sein. Mittlerweile steht fest, dass es sich bei dieser Materie nicht um Quarks oder Elektronen handelt, die unsere Atome ausmachen. Auch andere Kandidaten wie Neutrinos scheiden weitgehend aus. „Wir vermuten heute, dass sich Dunkle Materie recht schnell nach dem Urknall gebildet hat“, so Oberlack. „Sie besteht wahrscheinlich aus neutralen, massiven Teilchen, die mit anderen Teilchen nur schwach wechselwirken.“ Diese WIMPs (weakly interacting massive particles) oder auch „Schwächlinge“ sind bisher nicht entdeckt worden.

Oberlack sucht sie zusammen mit einem Forscherteam aus 12 Instituten tief unter der Erde in einem Xenon-Detektor, der peinlich genau vor kosmischer Strahlung abgeschottet wird. Das auf minus 95 Grad abgekühlte, flüssige Xenon soll in den Laboratori Nazionali del Gran Sasso die WIMPs einfangen. Nach ersten Experimenten mit kleineren Detektoren sucht derzeit das XENON100-Experiment mit einer Masse von 62 kg und gegenüber dem Vorläufer-Experiment hundertfach verringertem Untergrund nach Dunkler Materie. Dieses Experiment soll die derzeitige Sensitivitätsgrenze um einen weiteren Faktor 15 verbessern und testet damit direkt einen erheblichen Anteil der theoretisch interessanten „Neutralinos“, einer WIMP-Art, die auf dem Konzept der Supersymmetrie beruht. Supersymmetrie oder SUSY ist eine postulierte neue Symmetrie der Natur, die erst bei hohen Teilchenenergien, etwa im frühen Universum oder in großen Beschleunigern wie dem LHC am CERN, erreicht würde.

Gestützt auf die erfolgreiche Datennahme mit XENON100, plant die XENON-Kollaboration bereits einen Detektor mit einer Masse von einer Tonne, um in drei Jahren nochmals um einen Faktor 50 bis 100 empfindlicher zu werden. Sind in der Tat Neutralinos die Teilchen der Dunklen Materie, so können sie in den nächsten Jahren im Labor nachgewiesen und einige ihrer physikalischen Eigenschaften könnten gemessen werden.

Die Arbeiten werden von der Alfried Krupp von Bohlen und Halbach-Stiftung im Rahmen des Programms „Rückkehr deutscher Wissenschaftler aus dem Ausland“ mit 100.000 Euro gefördert.

Weitere Informationen:
Univ.-Prof. Dr. Uwe Gerd Oberlack
Experimentelle Teilchen- und Astroteilchenphysik (ETAP)
Institut für Physik
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-25167
Fax +49 6131 39-25169
E-Mail: oberlack@uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.etap.physik.uni-mainz.de/487_ENG_HTML.php
http://www.uni-mainz.de/universitaet/40250.php
http://www.lngs.infn.it/home.htm

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie