Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Jagd nach dem Schwächling

19.01.2011
Ein Experiment im Gran-Sasso-Massiv will die Bestandteile der Dunklen Materie auffinden: WIMP-Teilchen im Fokus

Das Spektrum der physikalischen Forschung an der Johannes Gutenberg-Universität Mainz (JGU) ist um ein bedeutendes Arbeitsfeld reicher: die direkte Suche nach Dunkler Materie. Mit der Berufung von Univ.-Prof. Dr. Uwe Oberlack im Sommer 2010 hat das Institut für Physik einen weltweit anerkannten Experten auf diesem Gebiet gewonnen. Er kann in Mainz an die Forschungsarbeiten zur indirekten Suche nach Dunkler Materie anknüpfen. Damit ist die JGU in die internationale Spitzengruppe zur Erforschung der Dunklen Materie aufgerückt.

Sie ist maßgeblich für die klumpige Verteilung der Materie im Universum: von Galaxien über Galaxienhaufen bis hin zu den größten uns bekannten Strukturen von Superhaufen und Filamenten, die große kosmische Leerräume wie Blasen in einem Schaumbad umgeben. Sie war die Wiege, in der sich Galaxien bereits früh ausbilden konnten. Sie umgibt und durchdringt unsere und andere Galaxien noch heute und hält sie zusammen, ist aber völlig unsichtbar. Wenig ist bisher über die Dunkle Materie bekannt, die knapp ein Viertel unseres Universums ausmacht. „Wir wissen vor allem, was Dunkle Materie nicht ist“, erklärt Uwe Oberlack, der vor seiner Rückkehr nach Deutschland zehn Jahre lang in den USA auf diesem Gebiet und in der Hochenergie-Astrophysik geforscht hat. „Dunkle Materie ist nicht einfach nur durchsichtig, sondern sie ist komplett verschieden von jeder Materieform, die wir bisher kennen.“ Oberlack war am Aufbau eines internationalen Forschungsprogramms, XENON, beteiligt, mit dem im italienischen Gran-Sasso-Massiv in einem unterirdischen Labor nach Bestandteilen der Dunklen Materie gesucht wird. Das derzeitige XENON100-Experiment ist eines von zwei weltweit führenden Experimenten zum Nachweis Dunkler Materie.

Die Erforschung der Dunklen Materie gehört zu den wichtigsten wissenschaftlichen Vorhaben des nächsten Jahrzehnts. Das Universum besteht zu 23 Prozent aus Dunkler Materie, während unsere normale, sichtbare Materie nur 4,6 Prozent beiträgt. Der größte Teil mit 72 Prozent besteht aus Dunkler Energie, die für die beschleunigte Expansion des Universums verantwortlich ist und über die noch weniger als über die Dunkle Materie bekannt ist.

Dass es Dunkle Materie überhaupt gibt, wurde Anfang der 1930er Jahre durch die Beobachtung von Galaxien in Galaxienhaufen postuliert: Sie bewegen sich viel zu schnell, als dass die Galaxienhaufen allein durch die Gravitation der sichtbaren Masse zusammengehalten würden. Später fand man einen ähnlichen Effekt in Spiralgalaxien. Eine andere Kraft müsste also für die hohe Rotationsgeschwindigkeit am Rande von Galaxien verantwortlich sein. Mittlerweile steht fest, dass es sich bei dieser Materie nicht um Quarks oder Elektronen handelt, die unsere Atome ausmachen. Auch andere Kandidaten wie Neutrinos scheiden weitgehend aus. „Wir vermuten heute, dass sich Dunkle Materie recht schnell nach dem Urknall gebildet hat“, so Oberlack. „Sie besteht wahrscheinlich aus neutralen, massiven Teilchen, die mit anderen Teilchen nur schwach wechselwirken.“ Diese WIMPs (weakly interacting massive particles) oder auch „Schwächlinge“ sind bisher nicht entdeckt worden.

Oberlack sucht sie zusammen mit einem Forscherteam aus 12 Instituten tief unter der Erde in einem Xenon-Detektor, der peinlich genau vor kosmischer Strahlung abgeschottet wird. Das auf minus 95 Grad abgekühlte, flüssige Xenon soll in den Laboratori Nazionali del Gran Sasso die WIMPs einfangen. Nach ersten Experimenten mit kleineren Detektoren sucht derzeit das XENON100-Experiment mit einer Masse von 62 kg und gegenüber dem Vorläufer-Experiment hundertfach verringertem Untergrund nach Dunkler Materie. Dieses Experiment soll die derzeitige Sensitivitätsgrenze um einen weiteren Faktor 15 verbessern und testet damit direkt einen erheblichen Anteil der theoretisch interessanten „Neutralinos“, einer WIMP-Art, die auf dem Konzept der Supersymmetrie beruht. Supersymmetrie oder SUSY ist eine postulierte neue Symmetrie der Natur, die erst bei hohen Teilchenenergien, etwa im frühen Universum oder in großen Beschleunigern wie dem LHC am CERN, erreicht würde.

Gestützt auf die erfolgreiche Datennahme mit XENON100, plant die XENON-Kollaboration bereits einen Detektor mit einer Masse von einer Tonne, um in drei Jahren nochmals um einen Faktor 50 bis 100 empfindlicher zu werden. Sind in der Tat Neutralinos die Teilchen der Dunklen Materie, so können sie in den nächsten Jahren im Labor nachgewiesen und einige ihrer physikalischen Eigenschaften könnten gemessen werden.

Die Arbeiten werden von der Alfried Krupp von Bohlen und Halbach-Stiftung im Rahmen des Programms „Rückkehr deutscher Wissenschaftler aus dem Ausland“ mit 100.000 Euro gefördert.

Weitere Informationen:
Univ.-Prof. Dr. Uwe Gerd Oberlack
Experimentelle Teilchen- und Astroteilchenphysik (ETAP)
Institut für Physik
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-25167
Fax +49 6131 39-25169
E-Mail: oberlack@uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.etap.physik.uni-mainz.de/487_ENG_HTML.php
http://www.uni-mainz.de/universitaet/40250.php
http://www.lngs.infn.it/home.htm

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantenmechanik ist komplex genug – vorerst …
21.04.2017 | Universität Wien

nachricht Tief im Inneren von M87
20.04.2017 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Im Focus: Tief im Inneren von M87

Die Galaxie M87 enthält ein supermassereiches Schwarzes Loch von sechs Milliarden Sonnenmassen im Zentrum. Ihr leuchtkräftiger Jet dominiert das beobachtete Spektrum über einen Frequenzbereich von 10 Größenordnungen. Aufgrund ihrer Nähe, des ausgeprägten Jets und des sehr massereichen Schwarzen Lochs stellt M87 ein ideales Laboratorium dar, um die Entstehung, Beschleunigung und Bündelung der Materie in relativistischen Jets zu erforschen. Ein Forscherteam unter der Leitung von Silke Britzen vom MPIfR Bonn liefert Hinweise für die Verbindung von Akkretionsscheibe und Jet von M87 durch turbulente Prozesse und damit neue Erkenntnisse für das Problem des Ursprungs von astrophysikalischen Jets.

Supermassereiche Schwarze Löcher in den Zentren von Galaxien sind eines der rätselhaftesten Phänomene in der modernen Astrophysik. Ihr gewaltiger...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: Neu entdeckter Exoplanet könnte bester Kandidat für die Suche nach Leben sein

Supererde in bewohnbarer Zone um aktivitätsschwachen roten Zwergstern gefunden

Ein Exoplanet, der 40 Lichtjahre von der Erde entfernt einen roten Zwergstern umkreist, könnte in naher Zukunft der beste Ort sein, um außerhalb des...

Im Focus: Resistiver Schaltmechanismus aufgeklärt

Sie erlauben energiesparendes Schalten innerhalb von Nanosekunden, und die gespeicherten Informationen bleiben auf Dauer erhalten: ReRAM-Speicher gelten als Hoffnungsträger für die Datenspeicher der Zukunft.

Wie ReRAM-Zellen genau funktionieren, ist jedoch bisher nicht vollständig verstanden. Insbesondere die Details der ablaufenden chemischen Reaktionen geben den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

Baukultur: Mehr Qualität durch Gestaltungsbeiräte

21.04.2017 | Veranstaltungen

Licht - ein Werkzeug für die Laborbranche

20.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligenter Werkstattwagen unterstützt Mensch in der Produktion

21.04.2017 | HANNOVER MESSE

Forschungszentrum Jülich auf der Hannover Messe 2017

21.04.2017 | HANNOVER MESSE

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungsnachrichten