Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Jagd nach schnellen Neutronen

26.01.2011
Das derzeit intensiv erforschte Prinzip der Transmutation ist eine vielversprechende Möglichkeit, um den weltweit anfallenden radioaktiven Abfall aus Kernkraftwerken zu verringern. Dank einer eigenen Neutronenanlage forschen auch Wissenschaftler aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) auf diesem Gebiet. Sie koordinieren das von der EU mit rund einer Mio. Euro geförderte Forschungsprojekt ERINDA, das am 27./28. Januar 2011 mit einem Kick-off Meeting in Dresden startet.

Bei der Spaltung von Atomkernen in den Kernreaktoren der heute betriebenen Kernkraftwerke fallen radioaktive Reststoffe an, die teilweise sehr giftig sind und nur langsam zerfallen. Manche Stoffe benötigen einige Hunderttausend Jahre, bis sie ihre Energie in Form von radioaktiver Strahlung abgegeben haben. Zugleich ist in Deutschland, wie in vielen anderen Staaten auch, die Endlagerfrage noch nicht gelöst.

Wissenschaftler sehen schon seit Längerem in der Transmutation einen vielversprechenden Weg gerade für die langlebigen radioaktiven Abfallstoffe. Es handelt sich hierbei um radioaktive Schwermetalle wie Plutonium, Americium und Curium, die in der Fachsprache „minore Aktiniden“ genannt werden. Gelänge es, diese mit Hilfe von schnellen Neutronen in weniger langlebige bzw. teilweise sogar stabile Stoffe umzuwandeln, dann bräuchte man zwar immer noch Endlager, doch könnten diese kleiner und in ihren zeitlichen Dimensionen überschaubarer ausfallen.

Das mit rund einer Mio. Euro von der Europäischen Union geförderte Projekt ERINDA (European Research Infrastructures for Nuclear Data Applications), das am 27. und 28. Januar 2011 im HZDR startet, soll wichtige Daten für die Entwicklung künftiger Anlagen zur Transmutation radioaktiven Abfalls liefern.

Arbeit von Neutronen

Unter Transmutation versteht man die Umwandlung chemischer Elemente in andere chemische Elemente durch Kernreaktionen. Transmutationen finden beispielsweise in Sternen statt, denn nur so können Elemente im Universum entstehen, die schwerer sind als Eisen. Neutronen, also die elektrisch ungeladenen Teilchen, die zusammen mit positiv geladenen Protonen die Bestandteile der Atomkerne bilden, spielen dafür eine zentrale Rolle.

Neutronen können Atomkerne spalten und setzen dabei Energie frei, die im Kernkraftwerk in elektrische Energie umgewandelt wird. Dabei werden wieder Neutronen frei. Zudem entstehen Spaltprodukte, von denen die meisten relativ schnell zerfallen – man spricht von einer kurzen Halbwertszeit – und dabei Strahlung abgeben. Neutronen können aber auch von Atomkernen eingefangen werden, die sich dadurch in andere Atomkerne umwandeln. So können Plutonium und andere radioaktive Schwermetalle entstehen, die nur langsam zerfallen, also eine lange Halbwertszeit haben, und zudem hochgiftig sind.

Doch auch diese radioaktiven Schwermetalle sind weiter spaltbar und könnten in den Transmutationsanlagen der Zukunft auch zur Energiegewinnung eingesetzt werden. Allerdings werden dafür schnelle Neutronen gebraucht. Für die Kernspaltung in heutigen Reaktoren sind dagegen langsame, weniger energiereiche Neutronen verantwortlich.

Modernste Neutronenstrahl-Technologie

Um Transmutationsanlagen konzipieren und bauen zu können, müssen die Eigenschaften schneller Neutronen genauestens bekannt sein. Damit befasst sich HZDR-Wissenschaftler Dr. Arnd Junghans, der gleichzeitig das ERINDA-Projekt koordiniert. Mit der Neutronenquelle nELBE verfügen er und seine Kollegen über eine Anlage für schnelle Neutronen mit einer hohen Bewegungsenergie. Die Neutronen entstehen, indem Elektronen aus dem Elektronenbeschleuniger ELBE auf ein Target, also eine Zieloberfläche, aus flüssigem Blei gelenkt werden. Stößt ein Elektron mit einem Bleiatom zusammen, so wird es abgebremst und gibt einen Teil seiner Energie in Form eines Photons ab. Dieses Lichtteilchen ist so energiereich, dass es ein Neutron aus einem Atomkern herausschlagen kann. „Dabei werden 200.000 ultrakurze Neutronenpulse pro Sekunde abgegeben, eine weltweit einzigartige Leistung“, so Arnd Junghans. Die bisherigen Experimente dienten dazu, die Reaktion der schnellen Neutronen mit Eisenatomen zu untersuchen. Eisenlegierungen spielen in zukünftigen Transmutationsanlagen als Baustoff eine Rolle. Werden die Neutronen beispielsweise durch die Eisenkerne zu sehr abgebremst, fehlt ihnen die Energie für die eigentliche Aufgabe: die Umwandlung von radioaktiven Schwermetallen.

Bald sollen die schnellen Neutronen im HZDR auch auf Plutonium-Kerne gelenkt werden, um die genauen Umwandlungsraten bestimmen zu können. Diese Experimente werden im Rahmen eines Projektes durch das Bundesministerium für Bildung und Forschung gefördert. „Über die Messung der Flugzeit und der Geschwindigkeit der Neutronen können wir deren Energie berechnen“, so Arnd Junghans weiter. Die Informationen

werden gebraucht, um neue Typen von Kernreaktoren, so zum Beispiel für die Transmutation, zu entwickeln oder bestehende Anlagen zu optimieren.

Um die benötigten Kerndaten zu erheben, wird im Rahmen des ERINDA-Projektes der Zugang von Wissenschaftlern zu Forschungsinfrastrukturen, wie dem Neutronenexperiment nELBE im HZDR, gefördert. Außerdem wird der Austausch von Wissenschaftlern und Forschungsergebnissen unterstützt. An dem Forschungsprojekt sind insgesamt 13 Partner aus 10 europäischen Ländern beteiligt.

Weitere Informationen:
Dr. Arnd Junghans
Projektkoordinator ERINDA
Helmholtz-Zentrum Dresden-Rossendorf
Tel. +49 351 260-3589
Fax +49 351 260-13589
a.junghans@hzdr.de
Medienkontakt:
Dr. Christine Bohnet
Pressesprecherin
Helmholtz-Zentrum Dresden-Rossendorf
Tel. +49 351 260-2450
Fax +49 351 260-2700
presse@hzdr.de
Über das HZDR
Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) hat das Ziel, langfristig ausgerichtete Spitzenforschung auf den gesellschaftlich relevanten Gebieten Schlüsseltechnologien, Struktur der Materie, Energie und Gesundheit zu leisten. In strategischen Kooperationen mit Partnern aus Forschung und Industrie bearbeiten wir deshalb neue, für die moderne Industriegesellschaft drängende Themenfelder zu folgenden Fragestellungen:
• Wie verhält sich Materie unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
• Wie können Tumorerkrankungen frühzeitig erkannt und wirksam behandelt werden?
• Wie schützt man Mensch und Umwelt vor technischen Risiken?
Zur Beantwortung dieser wissenschaftlichen Fragen setzen wir sechs Großgeräte mit teils einmaligen Experimentiermöglichkeiten ein, die auch externen Nutzern zur Verfügung stehen.

Die Ausbildung von wissenschaftlichem und technischem Nachwuchs erfolgt auf hohem Niveau und in enger Zusammenarbeit mit den Hochschulen. Auf die Vereinbarkeit von Familie und Beruf achtet das HZDR in besonderem Maße.

Die Helmholtz-Gemeinschaft leistet Beiträge zur Lösung großer und drängender Fragen von Gesellschaft, Wissenschaft und Wirtschaft durch wissenschaftliche Spitzenleistungen in sechs Forschungsbereichen: Energie, Erde und Umwelt, Gesundheit, Schlüsseltechnologien, Struktur der Materie sowie Luftfahrt, Raumfahrt und Verkehr. Die Helmholtz-Gemeinschaft ist mit über 30.000 Mitarbeiterinnen und Mitarbeitern in 17 Forschungszentren und einem Jahresbudget von rund 3 Milliarden Euro die größte Wissenschaftsorganisation Deutschlands. Ihre Arbeit steht in der Tradition des großen Naturforschers Hermann von Helmholtz (1821-1894).

Dr. Christine Bohnet | Helmholtz-Zentrum
Weitere Informationen:
http://www.helmholtz.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Sterngeburt in den Winden supermassereicher Schwarzer Löcher
28.03.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Das anwachsende Ende der Ordnung
27.03.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit