Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Ionen-Pingpong Kräfte in Atomkernen sichtbar gemacht

20.06.2013
Einem internationalen Wissenschaftlerteam ist es erstmals gelungen, mit einem Flugzeitmassenspektrometer die Bindungsenergien exotischer Atomkerne zu bestimmen.

Wie jetzt im Fachmagazin Nature berichtet, ergeben sich aus dem Vergleich der Messungen mit neuen theoretischen Werten wichtige Rückschlüsse auf die Natur der Kräfte, die diese Atomkerne im Innersten zusammenhalten.


Ionen-Pingpong
Graphik: Frank Wienholtz


Schematische Übersicht der neuen Komponente von ISOLTRAP zur Multireflexions-Flugzeitmassenspektrometrie. Die Ionen werden von den beiden „Spiegeln“ hin und her reflektiert, wodurch die einzelnen Ionenspezies voneinander getrennt werden. Anschließend werden die Ionen mit Hilfe eines Detektors hoher Zeitauflösung nachgewiesen. Graphik: Frank Wienholtz

Die schwierigen Messungen wurden möglich durch eine Erweiterung des Präzisionsexperiments ISOLTRAP am europäischen Forschungszentrum CERN.

In der von Forschern der Universität Greifwald beigesteuerten neuen Komponente werden Ionen wie bei einem Pingpongspiel hin und her reflektiert. So konnten erstmals die Massen der künstlich erzeugten Isotope Calcium-53 und Calcium-54 bestimmt werden. Diesen Isotopen kommt eine Schlüsselrolle in der kernphysikalischen Grundlagenforschung zu. Die Messungen bestätigen Vorhersagen der beteiligten Wissenschaftler aus Darmstadt, bei denen auch Dreikörperkräfte berücksichtigt werden.

Aus den Massen der Atomkerne kann über Einsteins Formel E=mc2 auf die Energien geschlossen werden, mit denen die Protonen und Neutronen im Kern gebunden sind. Besonders hohe Bindungsenergien findet man bei Kernen mit „magischen“ Protonen- und Neutronenzahlen, bei denen die Kernbestandteile geschlossene Schalen bilden. Diese speziellen Zahlen sind für die stabilen Kerne wohl bekannt. Sie lauten 8, 20, 28, 50, 82 und 126. Bei den exotischen Systemen mit kurzen Halbwertszeiten besteht aber noch erheblicher Forschungsbedarf. Zur Verbesserung der theoretischen Beschreibung nahmen die Darmstädter Theoretiker Dreiteilchenkräfte hinzu, für deren quantitative Charakterisierung lediglich Eingangsdaten der leichtesten Elemente, Wasserstoff und Helium, benötigt wurden. Mit Rechnungen am Jülich Supercomputing Centre gelang es, Vorhersagen für die Massen der viel schwereren Calcium-Isotope zu treffen. Diese zeigen für Neutronen neben den bekannten Schalenabschlüssen bei 20 und 28 die zusätzliche magische Zahl 32.

Atomkernen mit einem großen Ungleichgewicht zwischen Protonen und Neutronen kommt eine besondere Bedeutung für das Verständnis der Kernkräfte zu. Allerdings sind entsprechende Messungen extrem schwierig, da diese Atomkerne nur in geringsten Mengen produziert werden können und binnen eines Wimpernschlags wieder zerfallen. Solche Teilchen liefert die „Isotopenfabrik“ ISOLDE am europäischen Forschungszentrum CERN in Genf als Ionenstrahlen an die Präzisionswaage ISOLTRAP. Eine weitere Herausforderung besteht darin, dass die gewünschten Atome nur „verunreinigt“ mit weiteren Teilchen ähnlicher Masse, sogenannten Isobaren, bereitgestellt werden können.
Unter diesen Bedingungen kommen die bisher verwendeten Mikrowaagen, die Penningionenfallen, an ihre Grenzen. Als Alternative bieten sich Multireflexions-Flugzeit-Massenspektrometer an. Daher wurde nun für ISOLTRAP ein entsprechendes Instrument am Institut für Physik der Universität Greifswald entwickelt, aufgebaut und in das ISOLTRAP-Massenspektrometer integriert. Nach dem Einsatz als hochauflösender Isobarenseparator für Penningfallen-Untersuchungen (siehe idw-Pressemitteilung „Präzisionsmassenmessung im Labor gewährt Blick in die Kruste von Neutronensternen“) ermöglichte es jetzt als Massenspektrometer die ersten Messungen an den Isotopen Calcium-53 und Calcium-54.

Das Prinzip, die Flugzeitmassenspektrometrie, ist einfach: Alle Ionen erfahren die gleiche Kraft und werden daher bei unterschiedlicher Masse auf verschiedene Geschwindigkeiten beschleunigt. Deswegen kommen sie nach Durchlaufen einer Driftstrecke nacheinander am Detektor an – die leichten zuerst und die schweren später: Es entsteht ein Flugzeitmassenspektrum. Üblicherweise sind die Driftstrecken etwa einem Meter lang. Aber hier kommt ein Trick ins Spiel: Mit einem „Ionenspiegel“ lassen sich die Ionen reflektieren und mit einem zweiten Spiegel kann man kilometerlange Driftstrecken auf Meter-Größe zusammenfalten. Das Ionen-Pingpong, bei dem die Teilchen tausende Male hin und her gespiegelt werden, dauert nur wenige Millisekunden. Es ist viel schneller als die Penningfallen-Experimente und benötigt zudem auch weniger Ionen.

Damit war der Durchbruch zu den exotischen Calciumisotopen geschafft und die Vorhersagen der Theorie-Gruppe der TU Darmstadt konnten überzeugend bestätigt werden. Der erfolgreiche Einsatz des Greifswalder Instruments etabliert die Multireflexions-Flugzeitmassenspektrometrie als Zukunftstechnologie zur Erforschung des Atomkerns.

Am Betrieb des Ionenfallen-System ISOLTRAP waren Wissenschaftler des CERN, des Max-Planck-Instituts für Kernphysik in Heidelberg, des GSI Helmholtzzentrums für Schwerionenforschung in Darmstadt sowie von Univer-sitäten in Dresden, Greifswald, Istanbul (Türkei), Leuven (Belgien) und Orsay (Frankreich) beteiligt.

Weitere Informationen
Originalveröffentlichung
Masses of exotic calcium isotopes pin down nuclear forces
F. Wienholtz, D. Beck, K. Blaum, Ch. Borgmann, M. Breitenfeldt, R.B. Cakirli, S. George, F. Herfurth, J.D. Holt, M. Kowalska, S. Kreim, D. Lunney, V. Manea, J. Menendez, D. Neidherr, M. Rosenbusch, L. Schweikhard, A. Schwenk, J. Simonis, J. Stanja, R. N. Wolf, K. Zuber, Nature 20. Juni 2013
http://dx.doi.org/10.1038/nature12226

Die Fotos und Grafiken können für redaktionelle Zwecke im Zusammenhang mit der Pressemitteilung kostenlos heruntergeladen und genutzt werden. Dabei ist der Name des Bildautors zu nennen.
http://www.uni-greifswald.de/informieren/pressestelle/pressefotos/pressefotos-2013/pressefotos-juni-2013.html

Ansprechpartner
Dipl.-Phys. Frank Wienholtz und Prof. Dr. Lutz Schweikhard
Institut für Physik der Universität Greifswald
Felix-Hausdorff-Straße 6, 17487 Greifswald
Telefon 03834 86-4700
wienholtz@physik.uni-greifswald.de
lschweik@physik.uni-greifswald.de
http://ww6.physik.uni-greifswald.de/index.html
Prof. Dr. Achim Schwenk
Institut für Kernphysik, Theoriezentrum
Technische Universität Darmstadt
Schlossgartenstraße 2, 64289 Darmstadt
Telefon 06151 16-64235
schwenk@physik.tu-darmstadt.de
http://theorie.ikp.physik.tu-darmstadt.de/strongint/
Sprecher der ISOLTRAP-Kollaboration
Prof. Dr. Klaus Blaum
Max-Planck-Institut für Kernphysik
Saupfercheckweg 1, 69117 Heidelberg
Telefon 06221 516850
klaus.blaum@mpi-hd.mpg.de
http://www.mpi-hd.mpg.de/blaum/index.de.html

Leiterin der ISOLTRAP-Gruppe am CERN
Dr. Susanne Kreim
CERN, bat. 3-1-070, 1211 Genf 23, SCHWEIZ
Telefon +41 22 7672646
susanne.waltraud.kreim@cern.ch
http://isoltrap.web.cern.ch/

Jan Meßerschmidt | idw
Weitere Informationen:
http://dx.doi.org/10.1038/nature12226
http://www.uni-greifswald.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor
23.02.2017 | Universität Bayreuth

nachricht Kühler Zwerg und die sieben Planeten
23.02.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie