Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Ionen-Pingpong Kräfte in Atomkernen sichtbar gemacht

20.06.2013
Einem internationalen Wissenschaftlerteam ist es erstmals gelungen, mit einem Flugzeitmassenspektrometer die Bindungsenergien exotischer Atomkerne zu bestimmen.

Wie jetzt im Fachmagazin Nature berichtet, ergeben sich aus dem Vergleich der Messungen mit neuen theoretischen Werten wichtige Rückschlüsse auf die Natur der Kräfte, die diese Atomkerne im Innersten zusammenhalten.


Ionen-Pingpong
Graphik: Frank Wienholtz


Schematische Übersicht der neuen Komponente von ISOLTRAP zur Multireflexions-Flugzeitmassenspektrometrie. Die Ionen werden von den beiden „Spiegeln“ hin und her reflektiert, wodurch die einzelnen Ionenspezies voneinander getrennt werden. Anschließend werden die Ionen mit Hilfe eines Detektors hoher Zeitauflösung nachgewiesen. Graphik: Frank Wienholtz

Die schwierigen Messungen wurden möglich durch eine Erweiterung des Präzisionsexperiments ISOLTRAP am europäischen Forschungszentrum CERN.

In der von Forschern der Universität Greifwald beigesteuerten neuen Komponente werden Ionen wie bei einem Pingpongspiel hin und her reflektiert. So konnten erstmals die Massen der künstlich erzeugten Isotope Calcium-53 und Calcium-54 bestimmt werden. Diesen Isotopen kommt eine Schlüsselrolle in der kernphysikalischen Grundlagenforschung zu. Die Messungen bestätigen Vorhersagen der beteiligten Wissenschaftler aus Darmstadt, bei denen auch Dreikörperkräfte berücksichtigt werden.

Aus den Massen der Atomkerne kann über Einsteins Formel E=mc2 auf die Energien geschlossen werden, mit denen die Protonen und Neutronen im Kern gebunden sind. Besonders hohe Bindungsenergien findet man bei Kernen mit „magischen“ Protonen- und Neutronenzahlen, bei denen die Kernbestandteile geschlossene Schalen bilden. Diese speziellen Zahlen sind für die stabilen Kerne wohl bekannt. Sie lauten 8, 20, 28, 50, 82 und 126. Bei den exotischen Systemen mit kurzen Halbwertszeiten besteht aber noch erheblicher Forschungsbedarf. Zur Verbesserung der theoretischen Beschreibung nahmen die Darmstädter Theoretiker Dreiteilchenkräfte hinzu, für deren quantitative Charakterisierung lediglich Eingangsdaten der leichtesten Elemente, Wasserstoff und Helium, benötigt wurden. Mit Rechnungen am Jülich Supercomputing Centre gelang es, Vorhersagen für die Massen der viel schwereren Calcium-Isotope zu treffen. Diese zeigen für Neutronen neben den bekannten Schalenabschlüssen bei 20 und 28 die zusätzliche magische Zahl 32.

Atomkernen mit einem großen Ungleichgewicht zwischen Protonen und Neutronen kommt eine besondere Bedeutung für das Verständnis der Kernkräfte zu. Allerdings sind entsprechende Messungen extrem schwierig, da diese Atomkerne nur in geringsten Mengen produziert werden können und binnen eines Wimpernschlags wieder zerfallen. Solche Teilchen liefert die „Isotopenfabrik“ ISOLDE am europäischen Forschungszentrum CERN in Genf als Ionenstrahlen an die Präzisionswaage ISOLTRAP. Eine weitere Herausforderung besteht darin, dass die gewünschten Atome nur „verunreinigt“ mit weiteren Teilchen ähnlicher Masse, sogenannten Isobaren, bereitgestellt werden können.
Unter diesen Bedingungen kommen die bisher verwendeten Mikrowaagen, die Penningionenfallen, an ihre Grenzen. Als Alternative bieten sich Multireflexions-Flugzeit-Massenspektrometer an. Daher wurde nun für ISOLTRAP ein entsprechendes Instrument am Institut für Physik der Universität Greifswald entwickelt, aufgebaut und in das ISOLTRAP-Massenspektrometer integriert. Nach dem Einsatz als hochauflösender Isobarenseparator für Penningfallen-Untersuchungen (siehe idw-Pressemitteilung „Präzisionsmassenmessung im Labor gewährt Blick in die Kruste von Neutronensternen“) ermöglichte es jetzt als Massenspektrometer die ersten Messungen an den Isotopen Calcium-53 und Calcium-54.

Das Prinzip, die Flugzeitmassenspektrometrie, ist einfach: Alle Ionen erfahren die gleiche Kraft und werden daher bei unterschiedlicher Masse auf verschiedene Geschwindigkeiten beschleunigt. Deswegen kommen sie nach Durchlaufen einer Driftstrecke nacheinander am Detektor an – die leichten zuerst und die schweren später: Es entsteht ein Flugzeitmassenspektrum. Üblicherweise sind die Driftstrecken etwa einem Meter lang. Aber hier kommt ein Trick ins Spiel: Mit einem „Ionenspiegel“ lassen sich die Ionen reflektieren und mit einem zweiten Spiegel kann man kilometerlange Driftstrecken auf Meter-Größe zusammenfalten. Das Ionen-Pingpong, bei dem die Teilchen tausende Male hin und her gespiegelt werden, dauert nur wenige Millisekunden. Es ist viel schneller als die Penningfallen-Experimente und benötigt zudem auch weniger Ionen.

Damit war der Durchbruch zu den exotischen Calciumisotopen geschafft und die Vorhersagen der Theorie-Gruppe der TU Darmstadt konnten überzeugend bestätigt werden. Der erfolgreiche Einsatz des Greifswalder Instruments etabliert die Multireflexions-Flugzeitmassenspektrometrie als Zukunftstechnologie zur Erforschung des Atomkerns.

Am Betrieb des Ionenfallen-System ISOLTRAP waren Wissenschaftler des CERN, des Max-Planck-Instituts für Kernphysik in Heidelberg, des GSI Helmholtzzentrums für Schwerionenforschung in Darmstadt sowie von Univer-sitäten in Dresden, Greifswald, Istanbul (Türkei), Leuven (Belgien) und Orsay (Frankreich) beteiligt.

Weitere Informationen
Originalveröffentlichung
Masses of exotic calcium isotopes pin down nuclear forces
F. Wienholtz, D. Beck, K. Blaum, Ch. Borgmann, M. Breitenfeldt, R.B. Cakirli, S. George, F. Herfurth, J.D. Holt, M. Kowalska, S. Kreim, D. Lunney, V. Manea, J. Menendez, D. Neidherr, M. Rosenbusch, L. Schweikhard, A. Schwenk, J. Simonis, J. Stanja, R. N. Wolf, K. Zuber, Nature 20. Juni 2013
http://dx.doi.org/10.1038/nature12226

Die Fotos und Grafiken können für redaktionelle Zwecke im Zusammenhang mit der Pressemitteilung kostenlos heruntergeladen und genutzt werden. Dabei ist der Name des Bildautors zu nennen.
http://www.uni-greifswald.de/informieren/pressestelle/pressefotos/pressefotos-2013/pressefotos-juni-2013.html

Ansprechpartner
Dipl.-Phys. Frank Wienholtz und Prof. Dr. Lutz Schweikhard
Institut für Physik der Universität Greifswald
Felix-Hausdorff-Straße 6, 17487 Greifswald
Telefon 03834 86-4700
wienholtz@physik.uni-greifswald.de
lschweik@physik.uni-greifswald.de
http://ww6.physik.uni-greifswald.de/index.html
Prof. Dr. Achim Schwenk
Institut für Kernphysik, Theoriezentrum
Technische Universität Darmstadt
Schlossgartenstraße 2, 64289 Darmstadt
Telefon 06151 16-64235
schwenk@physik.tu-darmstadt.de
http://theorie.ikp.physik.tu-darmstadt.de/strongint/
Sprecher der ISOLTRAP-Kollaboration
Prof. Dr. Klaus Blaum
Max-Planck-Institut für Kernphysik
Saupfercheckweg 1, 69117 Heidelberg
Telefon 06221 516850
klaus.blaum@mpi-hd.mpg.de
http://www.mpi-hd.mpg.de/blaum/index.de.html

Leiterin der ISOLTRAP-Gruppe am CERN
Dr. Susanne Kreim
CERN, bat. 3-1-070, 1211 Genf 23, SCHWEIZ
Telefon +41 22 7672646
susanne.waltraud.kreim@cern.ch
http://isoltrap.web.cern.ch/

Jan Meßerschmidt | idw
Weitere Informationen:
http://dx.doi.org/10.1038/nature12226
http://www.uni-greifswald.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics