Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Interstellare Moleküle verzweigen sich

26.09.2014

Zum ersten Mal ist es gelungen, ein kohlenstoffhaltiges Molekül mit "verzweigter" Struktur im interstellaren Raum nachzuweisen.

Dieses Molekül, iso-Propylcyanid, wurde in Sgr B2 gefunden, einer Sternentstehungsregion in unmittelbarer Nähe zum Zentrum unserer Milchstraße, bevorzugtes Revier für Astronomen auf der Jagd nach neuen Molekülen. Diese Struktur der Kohlenstoffatome unterscheidet es von allen anderen bisher im interstellaren Raum gefundenen Molekülen.


Staub und Moleküle in der Zentralregion unserer Milchstraße. Die Moleküle iso-Propylcyanid (i-C3H7CN, links) und normal-Propylcyanid (n-C3H7CN, rechts) wurden mit ALMA in Sgr B2 entdeckt.

MPIfR/A. Weiß (Hintergrundbild), Universität zu Köln/M. Koerber (Molekülmodelle), MPIfR/A. Belloche (Montage)


Zentralregion der Milchstraße mit Antennen des ALMA-Observatoriums in Chile.

Y. Beletsky (LCO)/ESO

Die Entdeckung von iso-Propylcyanid erweitert die Grenzen der Chemie von Sternentstehungsgebieten und ist ein Indiz für die Existenz von Aminosäuren, bei denen eine solch verzweigte Struktur eine Schlüsselgröße darstellt.

Es wurden bereits eine ganze Reihe von unterschiedlichen Molekülen im Weltraum entdeckt. Dabei treten wasserstoffreiche und kohlenstoffhaltige (organische) Moleküle, wie sie für die Existenz von Leben auf der Erde unverzichtbar sind, bevorzugt in Gaswolken auf, in denen neue Sterne entstehen.

„Es ist sehr wichtig für uns, zu verstehen, wie organische Moleküle sich bereits in frühen Phasen der Sternentstehung in diesen Gaswolken bilden“, sagt Arnaud Belloche vom Max-Planck-Institut für Radioastronomie, der Erstautor der Veröffentlichung. „Damit sind wir in der Lage, die einzelnen Phasen von der Entstehung von einfachen Molekülen zu möglicherweise Leben tragender Chemie zusammenzufügen.“

Die Suche nach Molekülen im interstellaren Raum hat bereits in den 1960er Jahren begonnen und bisher wurden ca. 180 unterschiedliche Moleküle gefunden. Jedes Molekül sendet Strahlung bei ganz bestimmten unterschiedlichen Wellenlängen und hat damit ein jeweils charakteristisches Muster oder Spektrum. Dieses Spektrum stellt somit eine Art Fingerabdruck dar, über den das Molekül durch Beobachtungen mit Radioteleskopen im Weltall identifiziert werden kann.

Bis jetzt hatten alle organischen Moleküle, die in Sternentstehungsregionen entdeckt werden konnten, etwas gemeinsam: sie setzen sich jeweils aus einem „Rückgrat“ von Kohlenstoffatomen zusammen, die entlang einer mehr oder weniger geraden Kette angeordnet sind. Das neu gefundene Molekül iso-Propylcyanid ist insofern einzigartig, als das die Anordnung seiner Kohlenstoffatome eine Verzweigung mit einem zusätzlichen Ast aufweist.

„Es ist das erste Mal überhaupt, dass solch ein Molekül mit verzweigtem Rückgrat aus Kohlenstoff im interstellaren Raum gefunden werden konnte“, sagt Holger Müller, ein Spektroskopiker an der Universität zu Köln und Ko-Autor der Veröffentlichung, der den spektralen Fingerabdruck des Moleküls im Labor vermessen hat, mit dessen Hilfe es dann auch im Weltraum nachgewiesen werden konnte.

Nicht nur die neuartige Struktur des Moleküls kommt überraschend. Es tritt auch beinahe halb so häufig auf wie sein unverzweigtes Schwestermolekül, normal-Propylcyanid (n-C3H7CN), das von diesem Forschungsteam bereits einige Jahre vorher mit dem 30-m-Radioteleskop des Institut de Radioastronomie Millimétrique (IRAM) entdeckt wurde. „Die enorme Häufigkeit von iso-Propylcyanid lässt vermuten, dass verzweigte Moleküle in der Tat die Regel und nicht etwa die Ausnahme bei Molekülen im interstellaren Raum darstellen könnten”, sagt Robin Garrod, ein Astrochemiker an der Cornell-Universität und Ko-Autor der Veröffentlichung.

Das Forscherteam nutzte das „Atacama Large Millimeter/submillimeter Array” (ALMA) in Chile, um den molekularen Gehalt der Sternentstehungsregion Sagittarius B2 (Sgr B2) zu untersuchen. Sie liegt in unmittelbarer Nähe zum Zentrum unserer Milchstraße in ca. 27000 Lichtjahren Entfernung von der Sonne und stellt eine einzigartig reichhaltige Fundgrube bei der Suche nach komplexen interstellaren Molekülen dar.

„Durch die Leistungsfähigkeit von ALMA waren wir in der Lage, eine komplette spektrale Durchmusterung in Richtung von Sagittarius B2 im Wellenlängenbereich zwischen 2,7 und 3,6 mm durchzuführen“, erklärt Arnaud Belloche. „Dabei waren Empfindlichkeit und räumliche Auflösung 10mal besser als in unseren vorhergehenden Durchmusterungen. Und wir haben nur ein Zehntel der Zeit dafür gebraucht.“ Die Wissenschaftler haben in den Daten systematisch nach den Fingerabdrücken von neuen interstellaren Molekülen gesucht.

„Auf dem Hintergrund von Vorhersagen aus unserer Kölner Datenbank für Molekülspektroskopie waren wir in der Lage, Spektrallinien von beiden Unterarten des Propylcyanids zu identifizieren“, sagt Holger Müller. Insgesamt 50 Spektrallinien im ALMA-Spektrum von Sgr B2 konnten eindeutig dem Molekül i-Propylcyanid zugeordnet werden und sogar 120 dem Molekül n-Propylcyanid. Beide Moleküle, aus jeweils 12 Einzelatomen bestehend, sind die größten Moleküle überhaupt, die bis jetzt in Sternentstehungsregionen gefunden werden konnten.

Die Forschergruppe hat mit Computermodellen die chemischen Vorgänge bei der Entstehung der in Sgr B2 gefundenen Moleküle simuliert. Ähnlich wie eine ganze Reihe weiterer komplexer organischer Moleküle bilden sich beide Arten von Propylcyanid sehr effektiv auf den Oberflächen von interstellaren Staubkörnern. „Aber“, so Robin Garrod, „die Modelle zeigen uns, dass bei Molekülen, die groß genug dazu sind, verzweigte Strukturen zu bilden, dies sogar die vorherrschenden Formen sein könnten. Der Nachweis des nächsten Mitglieds der Alkylcyanid-Serie, n-Butylcyanid (n-C4H9CN), mit sogar drei unterschiedlich verzweigten Isomeren, würde es uns möglich machen, diese Annahme zu testen.”

„Die in Meteoriten gefundenen Aminosäuren haben eine Zusammensetzung, die darauf schließen lässt, dass sie im interstellaren Medium entstanden sind“, fügt Arnaud Belloche hinzu. „Obwohl noch keine Aminosäure direkt im interstellaren Raum nachgewiesen werden konnte, dürfte die interstellare Chemie zur Erzeugung einer großen Zahl von komplexen Molekülen beigetragen haben, die schließlich ihren Weg auf die Oberfläche von Planeten gefunden haben.“

„Die Entdeckung von iso-Propylcyanid zeigt uns, dass Aminosäuren tatsächlich im interstellaren Medium vorkommen dürften, da die verzweigte Struktur ein Schlüsselmerkmal für diese Art von Molekülen darstellt“, schließt Karl Menten, Direktor und Leiter der Forschungsabteilung Millimeter- und Submillimeterastronomie am MPIfR in Bonn. „Aminosäuren wurden bereits in Meteoriten gefunden und wir hoffen, dass wir sie bald auch im interstellaren Medium nachweisen können.“

Originalveröffentlichung:

Detection of a branched alkyl molecule in the interstellar medium: iso-propyl cyanide, by Arnaud Belloche, Robin T. Garrod, Holger S. P. Müller, Karl M. Menten, 2014 Science, Ausgabe vom 26. September:
http://www.sciencemag.org/lookup/doi/10.1126/science.1256678 (nach Ablauf des Embargos).

Wissenschaftskontakt:

Dr. Arnaud Belloche,
Max-Planck-Institut für Radioastronomie.
Fon: +49(0)228-525-376
E-mail: belloche@mpifr-bonn.mpg.de

Dr. Robin T. Garrod,
Center for Radiophysics and Space Research,
Cornell University, U.S.A.
Fon: +1(0) 607-255-8967
E-mail: rgarrod@astro.cornell.edu

Dr. Holger Müller,
I. Physikalisches Institut, Universität zu Köln.
Fon: +49(0) 221-470-4528
E-mail: hspm@ph1.uni-koeln.de

Pressekontakt:

Dr. Norbert Junkes,
Presse- und Öffentlichkeitsarbeit,
Max-Planck-Institut für Radioastronomie.
Fon: +49(0)228-525-399
E-mail: njunkes@mpifr-bonn.mpg.de

Weitere Informationen:

http://www.mpifr-bonn.mpg.de/pressemeldungen/2014/10

Norbert Junkes | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics