Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Internationales Neutrino-Experiment erfolgreich abgeschlossen

16.06.2015

Zum fünften Mal konnte die Umwandlung eines Myon-Neutrinos in ein Tau-Neutrino direkt beobachtet werden – diese Umwandlung gilt nun als definitiv belegt. Damit schliesst das internationale OPERA-Experiment, das insbesondere dieses Phänomen nachweisen sollte, erfolgreich ab. Berner Physiker haben dafür wegweisende Arbeit geleistet.

Neutrinos sind von so kleiner Masse, dass sie fast ohne Widerstand den Erdball durchqueren können. Die Spuren der winzigen Elementarteilchen sind kaum aufzuspüren, da sie ungeladen sind und daher praktisch nicht mit ihrer Umgebung interagieren. Teilchenphysiker interessieren sich besonders für sie, da sie in drei Typen vorkommen: Elektron-, Myon- und Tau-Neutrinos, die sich ineinander verwandeln können.


Der OPERA-Detektor: Ein Koloss von 4000 Tonnen mit etwa 20 Metern Länge, 10 Metern Höhe und 10 Metern Breite, um die kleinsten Elementarteilchen zu entdecken.

Bild: OPERA

Die Umwandlung eines Myon- in ein Tau-Neutrino wurde erstmals 2010 im internationalen OPERA-Experiment beobachtet. Nun haben die OPERA-Forschenden eine fünfte solche Beobachtung vermeldet – damit ist die für Teilchenphysik statistisch erforderliche «5 Sigma»-Stufe erreicht.

Damit beträgt die Wahrscheinlichkeit, dass es sich beim beobachteten Signal um etwas anderes handelt als die Umwandlung eines Myon- in ein Tau-Neutrino, 1:3,5 Millionen. Mit dem definitiven Beleg dieser Umwandlung findet das OPERA-Experiment nun seinen erfolgreichen Abschluss. In einer Medienkonferenz werden heute die Ergebnisse präsentiert.

OPERA-Schlüsselgruppe aus Bern

Die Umwandlung von Neutrinos galt lange als Spekulation. 1998 wurde erstmals nachgewiesen, dass Myon-Neutrinos aus der kosmischen Strahlung in kleinerer Zahl die Erde erreichen als erwartet. Tatsächlich verwandeln sich die vermeintlich «fehlenden» Neutrinos aber in Tau-Neutrinos, wie das jetzige Ergebnis belegt.

«Der Nachweis dieser sogenannten Neutrino-Oszillationen ist wichtig für unser Verständnis von der Entstehung des Universums», sagt Antonio Ereditato, Leiter des Labors für Hochenergiephysik (LHEP) und Direktor der Albert Einstein Centers für Fundamental Physics (AEC) der Universität Bern. Eines der grössten, noch ungeklärten Rätsel der Wissenschaft sei bis heute, warum beim Urknall mehr Materie als Antimaterie erzeugt wurde. Neutrino-Oszillationen können möglicherweise wichtige Hinweise auf den zugrundeliegenden Mechanismus dieser Asymmetrie liefern und damit das Verständnis über die Entstehung des Universums verbessern.

«Mit dieser wichtigen Entdeckung beenden wir ein langes wissenschaftliches Abenteuer auf bestmögliche Weise», sagt Ereditato, der das OPERA-Experiment 1997 mit zwei weiteren Physikern, Kimio Niwa und Paolo Strolin, vorgeschlagen hatte. Seither waren zahlreiche Berner Forschende und Studierende massgeblich daran beteiligt, vor allem bei der Konstruktion des Teilchendetektors und in der Datenauswertung, die am LHEP durchgeführt wurde.

Damit ist die Arbeit für die Berner Forschungsgruppe aber noch lange nicht beendet: Einerseits werden weitere Daten analysiert und erstmals auch die oszillierten Tau-Neutrinos verwendet, um die Parameter des Umwandlungsprozesses zu bestimmen. Zusätzlich sind die Berner bereits an zwei neuen Neutrino-Projekten in den USA beteiligt. «Wir wollen noch weitere Geheimnisse der Neutrinos lüften», sagt Ereditato.

Neutrinos auf dem Weg nach Rom

Das OPERA-Experiment (Oscillation Project with Emulsion tRacking Apparatus) ist in einem Untergrund-Labor im Gran Sasso-Massiv bei Rom stationiert. Der Detektor zum Nachweis von Neutrinos ist ein Koloss von 4000 Tonnen, der aus 1-Millimeter dicken Bleiplatten besteht. Zwischen den Bleiplatten befinden sich dünne Filme aus Photoemulsion, um die Spuren der Teilchen nachzuweisen, die bei einer Interaktion mit dem Detektor entstehen. Die Filme werden schliesslich an computergesteuerten Mikroskopen am Labor für Hochenergiephysik (LHEP) der Universität Bern ausgewertet.

Die Neutrinos kamen aus Genf, wo das CERN einen Strahl von Myon-Neutrinos mit einem Teilchenbeschleuniger erzeugte und in Richtung des Gran Sasso Labors losschickte. Auf der Flugstrecke von 731 Kilometern sollte sich ein Teil der ausgesandten Myon-Neutrinos in Tau-Neutrinos umwandeln. 2010 wurde das erste Tau-Neutrino im OPERA-Detektor beobachtet, gefolgt von weiteren Beobachtungen 2012, 2013 und 2014. Mit der fünften Beobachtung gilt die Umwandlung nun als belegt.

Die für OPERA entwickelte Technologie findet nicht nur in der Neutrino-Physik Anwendung, sondern auch in anderen Gebieten. Insgesamt waren und sind von Berner Seite rund 30 Mitarbeitende an OPERA beteiligt, darunter auch die emeritierten Professoren Klaus Pretzl und Jean-Luc Vuillemier.

Weitere Informationen:

http://www.kommunikation.unibe.ch/content/medien/medienmitteilungen/news/2015/in...

Nathalie Matter | Universität Bern

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Spin-Strom aus Wärme: Neues Material für höhere Effizienz
20.11.2017 | Universität Bielefeld

nachricht cw-Wert wie ein Lkw: FH Aachen testet Weihnachtsbaum im Windkanal
20.11.2017 | FH Aachen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

500 Kommunikatoren zu Gast in Braunschweig

20.11.2017 | Veranstaltungen

VDI-Expertenforum „Gefährdungsanalyse Trinkwasser"

20.11.2017 | Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Künstliche neuronale Netze: 5-Achs-Fräsbearbeitung lernt, sich selbst zu optimieren

20.11.2017 | Informationstechnologie

Tonmineral bewässert Erdmantel von innen

20.11.2017 | Geowissenschaften

Hemmung von microRNA-29 schützt vor Herzfibrosen

20.11.2017 | Biowissenschaften Chemie