Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Interferenz als neue Methode zum Kühlen von Quanten-Bauteilen

08.02.2018

Theoretische Physiker schlagen vor, den Wärmefluss in Quantenbauelementen durch negative Interferenzen zu steuern. Studie in Physical Review Letters

Bauteile von Quantencomputern sind sehr empfindlich und müssen auf niedrige Temperaturen gekühlt werden. Ihre winzigen Maße macht sie besonders anfällig für einen Temperaturanstieg durch das thermische Rauschen, das von der Umgebung und anderen Komponenten in der Nähe ausgeht.


Physikalische Umsetzung eines thermischen Gleichrichters

© Shabir Barzanjeh, André Xuereb, Matteo Aquilina, 2018

Dr. Shabir Barzanjeh, Postdoc am Institute of Science and Technology Austria (IST Austria), hat nun zusammen mit Dr André Xuereb von der Universität Malta und Matteo Aquilina vom National Aerospace Centre in Malta eine neuartige Methode vorgeschlagen, um Quantengeräte kühl zu halten. Ihr Ansatz, den sie theoretisch bewiesen haben, beruht auf Quanteninterferenz.

Wenn ein heißeres Objekt neben ein kühleres Objekt gestellt wird, hat die Wärme normalerweise nur eine Möglichkeit: Sie kann nur vom heißeren Objekt zum kühleren Objekt fließen. Wenn also ein Objekt gekühlt werden soll, das bereits kühler als seine Umgebung ist, wie das zum Beispiel auch bei gewöhnlichen Kühlschränken getan wird, muss dafür ein zusätzlicher Aufwand unternommen werden.

Nun hat eine Gruppe von theoretischen Physikern eine neue Methode zur Kühlung von Qubits, den winzigen Bausteinen von Quantencomputern, vorgestellt und ihre Funktion in der Theorie belegt.

"Im Wesentlichen funktioniert das Gerät, das wir vorschlagen, wie ein Kühlschrank. Aber hier setzen wir ein quantenmechanisches Prinzip ein, um es zu realisieren", erklärt Shabir Barzanjeh, Erstautor der Studie und Postdoc in der Arbeitsgruppe von Professor Johannes Fink am IST Austria. In ihrer Arbeit untersuchten sie die Ströme von thermischem Rauschen in Quantengeräten und entwickelten eine Methode, die verhindern kann, dass der Wärmefluss den empfindlichen Bauteil erwärmt.

Das Geheimnis liegt in einem zusätzlichen Reservoir, mit anderen Worten: Neben dem Objekt, das gekühlt werden soll und dem Objekt, das Wärme erzeugt, gibt es ein drittes Objekt, das Wärme speichern kann, ein sogenanntes "Wärmebad". Dieses Bad ist mit den beiden anderen Geräten verbunden, und die Forscher haben gezeigt, dass es möglich ist, seinen Wärmestrom so zu kontrollieren, dass es die Wärme, die vom warmen Objekt direkt an das kühle kommt, durch spezielle Quanteninterferenz auslöscht.

"Bisher haben sich die Forscher auf die Steuerung von Signalen konzentriert, aber hier untersuchen wir das Rauschen. Das macht einen großen Unterschied aus, weil ein Signal kohärent ist und das Rauschen nicht". Bezüglich der praktischen Umsetzung des Mechanismus, der dem thermischen Rauschen die nötige Phasenverschiebung hinzufügt, hat Shabir Barzanjeh bereits einige Ideen. Es könnte ein mechanisches Objekt sein, das vibriert, und vielleicht könnte Strahlungsdruck verwendet werden, um die Oszillation zu steuern. "Jetzt ist es Zeit für Experimentatoren, die Theorie zu verifizieren", sagt er.

Weitere Informationen:

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.060601
http://ist.ac.at/fileadmin/user_upload/pictures/Press_pictures/180502_Shabir/Sha...

Bernhard Wenzl | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics