Intensive Röntgenblitze lösen astrophysikalisches Rätsel um hochgeladene Eisenatome

Im Weltraum ist Materie extrem anderen Bedingungen unterworfen als auf der Erde. So beträgt z.B. die Temperatur der Sonnenkorona 1-2 Mio. °C. In derart heißen Gasen ist die Materie hochionisiert, das heißt, den Atomen werden aus ihrer Hülle zahlreiche Elektronen entrissen, so dass positiv geladene Rümpfe zurück bleiben. Diese positiv geladenen Atomrümpfe senden Röntgenstrahlung aus, die von Astronomen beobachtet werden kann.

Besonders intensive Röntgenstrahlung wird von sechzehnfach ionisierten Eisenatomen (Fe16+-Ionen) bei charakteristischen Wellenlängen emittiert. Die relative Intensität dieser Fe16+-Röntgenlinien wird daher oft zur Diagnose der physikalischen Bedingungen in kosmischen Objekten herangezogen. Zu solchen Objekten zählen Sternatmosphären wie die Sonnenkorona oder auch ganze Cluster von Galaxien.

Damit aus dieser Diagnose sinnvolle Aussagen zum Beispiel über die Temperatur abgeleitet werden können, muss die charakteristische Röntgenemission der Fe16+-Ionen bekannt sein. Bisher wurden hierzu Resultate atomtheoretischer Berechnungen verwendet, deren Ergebnisse sich allerdings nicht mit den Beobachtungen deckten. Lange Zeit war unklar, ob diese Diskrepanz auf Unzulänglichkeiten der astrophysikalischen Interpretation oder auf Ungenauigkeiten der atomtheoretischen Berechnungen zurückzuführen ist. Diese wichtige Frage wurde nun durch ein Experiment entschieden, bei dem Fe16+-Ionen mit Röntgenstrahlung aus der weltweit intensivsten Röntgenquelle, dem Freie-Elektronen-Laser LCLS in Stanford, USA, bestrahlt wurden.

Die Fe16+-Ionen wurden unter kontrollierten Bedingungen in einer Ionenfalle erzeugt, und die durch die LCLS-Röntgenblitze hervorgerufene charakteristische Strahlung der Fe16+-Ionen wurde mit empfindlichen Detektoren vermessen. Die Messergebnisse zeigen eindeutig, dass die atomtheoretischen Rechnungen große Ungenauigkeiten aufweisen, und geben den Astrophysikern nun endlich die dringend benötigten zuverlässigen Linienverhältnisse an die Hand.

Das Experiment wurde von einem internationalen Team unter Federführung des Heidelberger Max-Planck-Instituts für Kernphysik (MPIK) durchgeführt. Stark beteiligt waren Wissenschaftler des Instituts für Atom- und Molekülphysik (IAMP) an der Justus-Liebig-Universität Gießen, die als Experten auf dem Gebiet der Wechselwirkung von Ionen mit Röntgenstrahlung ihr Know-how in das Projekt einbrachten. Die Gießener Beteiligung, die u.a. die Abordnung eines Doktoranden an das MPIK in Heidelberg umfasste, wurde von der Deutschen Forschungsgemeinschaft (DFG) gefördert.

Originalveröffentlichung: An unexpectedly low oscillator strength as the origin of the Fe XVII emission problem
S. Bernitt, G. V. Brown, J. K. Rudolph, R. Steinbrügge, A. Graf, M. Leutenegger, S. W. Epp,
S. Eberle, K. Kubicek, V. Mäckel, M. C. Simon, E. Träbert, E. W. Magee, C. Beilmann, N. Hell,
S. Schippers, A. Müller, S. M. Kahn, A. Surzhykov, Z. Harman, C. H. Keitel, J. Clementson, F. S. Porter, W. Schlotter, J. J. Turner, J. Ullrich, P. Beiersdorfer, and J. R. Crespo López-Urrutia,
Nature 492 (2012) 225, DOI: 10.1038/nature11627.

Kontakt:
Prof. Dr. Alfred Müller
Prof. Dr. Stefan Schippers
Institut für Atom- und Molekülphysik,
Justus-Liebig-Universität Gießen
Leihgesterner Weg 217, 35392 Gießen
Alfred.Mueller@iamp.physik.uni-giessen.de
www.uni-giessen.de/cms/iamp

Media Contact

Christel Lauterbach idw

Weitere Informationen:

http://www.uni-giessen.de/

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Uranimmobilisierende Bakterien im Tongestein

Mikrobielle Reduktion verringert Mobilität von Uranverbindungen. Bei der Konzeption von Endlagern für hochradioaktive Abfälle in tiefen geologischen Schichten müssen verschiedene Faktoren sorgfältig berücksichtigt werden, um ihre langfristige Sicherheit zu gewährleisten….

Erstmals 6G-Mobilfunk in Alpen getestet

Forschende der Universität Stuttgart erzielen leistungsstärkste Verbindung. Notrufe selbst in entlegenen Gegenden absetzen und dabei hohe Datenmengen in Echtzeit übertragen? Das soll möglich werden mit der sechsten Mobilfunkgeneration – kurz…

Neues Sensornetzwerk registriert ungewöhnliches Schwarmbeben im Vogtland

Das soeben fertig installierte Überwachungsnetz aus seismischen Sensoren in Bohrlöchern zeichnete Tausende Erdbebensignale auf – ein einzigartiger Datensatz zur Erforschung der Ursache von Schwarmbeben. Seit dem 20. März registriert ein…

Partner & Förderer