Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

In Wendelstein 7-X wurde erstmals ein Helium-Plasma erzeugt

11.12.2015

Betrieb in der Greifswalder Fusionsanlage

Geduld und Mühe der Plasmaforscher haben sich gelohnt. Gut zehn Jahre nachdem die Montage der Fusionsanlage Wendelstein 7-X am Max-Planck-Institut für Plasmaphysik in Greifswald begonnen hatte, haben Physiker darin am 10. Dezember 2015 das erste Helium-Plasma erzeugt. Damit hat nach gut einem Jahr technischer Vorbereitungen und Tests planmäßig der Experimentierbetrieb begonnen. Anfang 2016 soll in der Anlage erstmals ein Wasserstoffplasma gezündet werden, wie es auch für eine Kernfusion benötig wird. Mit Wendelstein 7-X, der weltweit größten Fusionsanlage vom Typ Stellarator, möchten Forscher belegen, dass sich dieser Bautyp als Kraftwerk eignet.


Mit einem hellen Leuchten zeigt sich das erste Plasma in der Greifswalder Fusionsanlage Wendelstein 7-X. Es bestand aus Helium und erreichte eine Temperatur von rund einer Million Grad Celsius

© IPP


Eine Schleife für die Diagnostik: Ein Techniker baut in das Plasmagefäß von Wendelstein 7-X eine diamagnetische Spule ein. Mit diesem Instrument wird die Änderung des magnetischen Flusses, eine wichtige Kenngröße des Magnetfeldes für den Plasma-Einschluss, gemessen.

© IPP, Dag Hathiramani

Nach neun Jahren Bauzeit und über einer Million Montagestunden endeten im April 2014 die wesentlichen Konstruktionsarbeiten an Wendelstein 7-X. Seither liefen die Betriebsvorbereitungen. Nacheinander prüften Wissenschaftler und Techniker alle Komponenten der Fusionsanlage: das Vakuum in den Gefäßen, das Kühlsystem, die supraleitenden Spulen, das von ihnen erzeugte Magnetfeld, das Steuersystem sowie die Heizapparaturen und Messgeräte.

Am 10. Dezember war es dann soweit: Im Kontrollraum fuhr die Betriebsmannschaft das Magnetfeld hoch, mit dem das Plasma eingeschlossen wird, damit es nicht mit der Wand der Plasmakammer in Berührung kommt und sich abkühlt. Nun startete die computergeregelte Steuerung des Experiments. Sie speiste rund ein Milligramm Heliumgas in das Plasmagefäß ein, aus dem sie zuvor die Luft gepumpt hatten. Anschließend schaltete das Team die Mikrowellenheizung für einen kurzen 1,8-Megawatt-Puls an – und im Visier der eingebauten Kameras und Messgeräte zeigte sich das erste Plasma.

Erstes Wasserstoff-Plasma Ende Januar

„Wir beginnen mit einem Plasma aus dem Edelgas Helium. Erst im nächsten Jahr wechseln wir zu dem eigentlichen Untersuchungsobjekt, einem Wasserstoff-Plasma“, erläutert Thomas Klinger, Direktor am Max-Planck-Institut für Plasmaforschung und Projektleiter von Wendelstein 7-X: „Denn mit Helium ist der Plasmazustand leichter zu erreichen. Außerdem können wir mit Helium-Plasmen die Oberfläche des Plasmagefäßes reinigen.“

Das erste Plasma in der Maschine dauerte eine Zehntel-Sekunde und erreichte eine Temperatur von rund einer Million Grad. „Wir sind sehr zufrieden“, fasst Hans-Stephan Bosch, dessen Bereich für den Betrieb der Anlage zuständig ist, den Verlauf des ersten Experimentiertages zusammen: „Alles lief wie vorgesehen.“

In den nächsten experimentellen Schritten wollen die Forscher die Dauer der Plasmaentladungen verlängern und untersuchen, wie die Helium-Plasmen durch Mikrowellen am besten zu erzeugen und aufzuheizen sind. Nach einer Pause zum Jahreswechsel geht es im Januar mit Einschlussstudien weiter, bei denen die Forscher unter anderem untersuchen, wie gut das Heliumplasma im Magnetfeld eingeschlossen wird. Mit diesen Experimenten bereiten die Forscher die ersten Experimente mit Plasmen aus Wasserstoff vor, der in Fusionsexperimenten letztlich zu Helium verschmolzen werden soll.

Hintergrund

Ziel der Fusionsforschung ist es, ein klima- und umweltfreundliches Kraftwerk zu entwickeln. Ähnlich wie die Sonne soll es aus der Verschmelzung von Atomkernen Energie gewinnen. Weil das Fusionsfeuer erst bei Temperaturen über 100 Millionen Grad zündet, darf der Brennstoff – ein dünnes Wasserstoffplasma – nicht in Kontakt mit kalten Gefäßwänden kommen. Von Magnet-feldern gehalten, schwebt er nahezu berührungsfrei im Inneren einer Vakuumkammer. Für den magnetischen Käfig haben sich zwei verschiedene Bauweisen durchgesetzt, Tokamak und Stellarator. Beide Anlagentypen werden im IPP untersucht: In Garching läuft der Tokamak ASDEX Upgrade, in Greifswald seit heute der Stellarator Wendelstein 7-X.

Gegenwärtig trauen viel Wissenschaftler nur einem Tokamak – dem internationalen Testreaktor ITER, der in weltweiter Zusammenarbeit zurzeit in Cadarache aufgebaut wird – ein energielieferndes Plasma zu. Wendelstein 7-X, die weltweit größte Fusionsanlage vom Typ Stellarator, wird keine Energie erzeugen. Trotzdem soll die Anlage beweisen, dass auch Stellaratoren kraftwerkstauglich sind. Mit Wendelstein 7-X soll ein Plasma erstmals genauso gut eingeschlossen werden wie mit einem Tokamak. Und mit 30 Minuten langen Entladungen soll die Anlage das wesentliche Plus der Stellaratoren vorführen: die Fähigkeit zum Dauerbetrieb. Dagegen können Tokamaks ohne aufwändige Zusatzmaßnahmen lediglich in Pulsen arbeiten.

Bund, Land und EU trugen Investitionskosten von 370 Millionen Euro

Die Montage von Wendelstein 7-X begann im April 2005: Ein Ring aus 50 supraleitenden, etwa 3,5 Meter hohen Magnetspulen ist das Kernstück der Anlage. Ihre speziellen Formen sind das Ergebnis ausgefeilter Optimierungsrechnungen der Abteilung „Stellarator-Theorie“ und ihrer über zehn-jährigen Suche nach einem besonders wärmeisolierenden magnetischen Käfig. Die Spulen sind auf ein stählernes Plasmagefäß aufgefädelt und von einer ringförmigen Stahlhülle umschlossen. In ihrem luftleer gepumpten Innenraum werden die Spulen mit flüssigem Helium auf Supraleitungs-temperatur bis nahe an den absoluten Nullpunkt abgekühlt. So verbrauchen sie nach dem Einschal-ten kaum Energie. Der von ihnen erzeugte Magnetfeldkäfig hält im Inneren des Plasmagefäßes das Forschungsobjekt der Wissenschaftler in Schwebe, das 30 Kubikmeter füllende ultra-dünne Plasma.

Die von Bund, Land und EU getragenen Investitionskosten für Wendelstein 7-X beliefen sich auf 370 Millionen Euro. Die Bauteile fertigten Firmen in ganz Europa; Aufträge im Wert von weit über 70 Millionen gingen an Unternehmen in der Region. Zahlreiche Forschungseinrichtungen im In- und Ausland waren am Aufbau der Anlage beteiligt. So trug im Rahmen der Helmholtz-Gemeinschaft Deutscher Forschungszentren das Karlsruher Institut für Technologie die Verantwortung für die Mikrowellen-Plasmaheizung; das Forschungszentrum Jülich baut Messgeräte und fertigte die aufwändigen Verbindungen der supraleitenden Magnetspulen. Den Einbau übernahmen Spezialisten der Polnischen Akademie der Wissenschaften in Krakau. Die US-amerikanischen Fusionsinstitute in Princeton, Oak Ridge und Los Alamos trugen unter anderem mit magnetischen Zusatzspulen und Messgeräten zur Ausrüstung von Wendelstein 7-X bei.

Prof. Dr. Thomas Klinger | Max-Planck-Institut für Plasmaphysik, Garching
Weitere Informationen:
https://www.mpg.de/9787501/wendelstein-7-X-kernfusion-stellarator

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Methode für die Datenübertragung mit Licht
29.05.2017 | Leibniz-Institut für Photonische Technologien e. V.

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Methode für die Datenübertragung mit Licht

Der steigende Bedarf an schneller, leistungsfähiger Datenübertragung erfordert die Entwicklung neuer Verfahren zur verlustarmen und störungsfreien Übermittlung von optischen Informationssignalen. Wissenschaftler der Universität Johannesburg, des Instituts für Angewandte Optik der Friedrich-Schiller-Universität Jena und des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) präsentieren im Fachblatt „Journal of Optics“ eine neue Möglichkeit, glasfaserbasierte und kabellose optische Datenübertragung effizient miteinander zu verbinden.

Dank des Internets können wir in Sekundenbruchteilen mit Menschen rund um den Globus in Kontakt treten. Damit die Kommunikation reibungslos funktioniert,...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebensdauer alternder Brücken - prüfen und vorausschauen

29.05.2017 | Veranstaltungen

49. eucen-Konferenz zum Thema Lebenslanges Lernen an Universitäten

29.05.2017 | Veranstaltungen

Internationale Konferenz an der Schnittstelle von Literatur, Kultur und Wirtschaft

29.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligente Sensoren mit System

29.05.2017 | Messenachrichten

Geckos kommunizieren überraschend flexibel

29.05.2017 | Biowissenschaften Chemie

1,5 Millionen Euro für vier neue „Innovative Training Networks” an der Universität Hamburg

29.05.2017 | Förderungen Preise