Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

In Wendelstein 7-X wurde erstmals ein Helium-Plasma erzeugt

11.12.2015

Betrieb in der Greifswalder Fusionsanlage

Geduld und Mühe der Plasmaforscher haben sich gelohnt. Gut zehn Jahre nachdem die Montage der Fusionsanlage Wendelstein 7-X am Max-Planck-Institut für Plasmaphysik in Greifswald begonnen hatte, haben Physiker darin am 10. Dezember 2015 das erste Helium-Plasma erzeugt. Damit hat nach gut einem Jahr technischer Vorbereitungen und Tests planmäßig der Experimentierbetrieb begonnen. Anfang 2016 soll in der Anlage erstmals ein Wasserstoffplasma gezündet werden, wie es auch für eine Kernfusion benötig wird. Mit Wendelstein 7-X, der weltweit größten Fusionsanlage vom Typ Stellarator, möchten Forscher belegen, dass sich dieser Bautyp als Kraftwerk eignet.


Mit einem hellen Leuchten zeigt sich das erste Plasma in der Greifswalder Fusionsanlage Wendelstein 7-X. Es bestand aus Helium und erreichte eine Temperatur von rund einer Million Grad Celsius

© IPP


Eine Schleife für die Diagnostik: Ein Techniker baut in das Plasmagefäß von Wendelstein 7-X eine diamagnetische Spule ein. Mit diesem Instrument wird die Änderung des magnetischen Flusses, eine wichtige Kenngröße des Magnetfeldes für den Plasma-Einschluss, gemessen.

© IPP, Dag Hathiramani

Nach neun Jahren Bauzeit und über einer Million Montagestunden endeten im April 2014 die wesentlichen Konstruktionsarbeiten an Wendelstein 7-X. Seither liefen die Betriebsvorbereitungen. Nacheinander prüften Wissenschaftler und Techniker alle Komponenten der Fusionsanlage: das Vakuum in den Gefäßen, das Kühlsystem, die supraleitenden Spulen, das von ihnen erzeugte Magnetfeld, das Steuersystem sowie die Heizapparaturen und Messgeräte.

Am 10. Dezember war es dann soweit: Im Kontrollraum fuhr die Betriebsmannschaft das Magnetfeld hoch, mit dem das Plasma eingeschlossen wird, damit es nicht mit der Wand der Plasmakammer in Berührung kommt und sich abkühlt. Nun startete die computergeregelte Steuerung des Experiments. Sie speiste rund ein Milligramm Heliumgas in das Plasmagefäß ein, aus dem sie zuvor die Luft gepumpt hatten. Anschließend schaltete das Team die Mikrowellenheizung für einen kurzen 1,8-Megawatt-Puls an – und im Visier der eingebauten Kameras und Messgeräte zeigte sich das erste Plasma.

Erstes Wasserstoff-Plasma Ende Januar

„Wir beginnen mit einem Plasma aus dem Edelgas Helium. Erst im nächsten Jahr wechseln wir zu dem eigentlichen Untersuchungsobjekt, einem Wasserstoff-Plasma“, erläutert Thomas Klinger, Direktor am Max-Planck-Institut für Plasmaforschung und Projektleiter von Wendelstein 7-X: „Denn mit Helium ist der Plasmazustand leichter zu erreichen. Außerdem können wir mit Helium-Plasmen die Oberfläche des Plasmagefäßes reinigen.“

Das erste Plasma in der Maschine dauerte eine Zehntel-Sekunde und erreichte eine Temperatur von rund einer Million Grad. „Wir sind sehr zufrieden“, fasst Hans-Stephan Bosch, dessen Bereich für den Betrieb der Anlage zuständig ist, den Verlauf des ersten Experimentiertages zusammen: „Alles lief wie vorgesehen.“

In den nächsten experimentellen Schritten wollen die Forscher die Dauer der Plasmaentladungen verlängern und untersuchen, wie die Helium-Plasmen durch Mikrowellen am besten zu erzeugen und aufzuheizen sind. Nach einer Pause zum Jahreswechsel geht es im Januar mit Einschlussstudien weiter, bei denen die Forscher unter anderem untersuchen, wie gut das Heliumplasma im Magnetfeld eingeschlossen wird. Mit diesen Experimenten bereiten die Forscher die ersten Experimente mit Plasmen aus Wasserstoff vor, der in Fusionsexperimenten letztlich zu Helium verschmolzen werden soll.

Hintergrund

Ziel der Fusionsforschung ist es, ein klima- und umweltfreundliches Kraftwerk zu entwickeln. Ähnlich wie die Sonne soll es aus der Verschmelzung von Atomkernen Energie gewinnen. Weil das Fusionsfeuer erst bei Temperaturen über 100 Millionen Grad zündet, darf der Brennstoff – ein dünnes Wasserstoffplasma – nicht in Kontakt mit kalten Gefäßwänden kommen. Von Magnet-feldern gehalten, schwebt er nahezu berührungsfrei im Inneren einer Vakuumkammer. Für den magnetischen Käfig haben sich zwei verschiedene Bauweisen durchgesetzt, Tokamak und Stellarator. Beide Anlagentypen werden im IPP untersucht: In Garching läuft der Tokamak ASDEX Upgrade, in Greifswald seit heute der Stellarator Wendelstein 7-X.

Gegenwärtig trauen viel Wissenschaftler nur einem Tokamak – dem internationalen Testreaktor ITER, der in weltweiter Zusammenarbeit zurzeit in Cadarache aufgebaut wird – ein energielieferndes Plasma zu. Wendelstein 7-X, die weltweit größte Fusionsanlage vom Typ Stellarator, wird keine Energie erzeugen. Trotzdem soll die Anlage beweisen, dass auch Stellaratoren kraftwerkstauglich sind. Mit Wendelstein 7-X soll ein Plasma erstmals genauso gut eingeschlossen werden wie mit einem Tokamak. Und mit 30 Minuten langen Entladungen soll die Anlage das wesentliche Plus der Stellaratoren vorführen: die Fähigkeit zum Dauerbetrieb. Dagegen können Tokamaks ohne aufwändige Zusatzmaßnahmen lediglich in Pulsen arbeiten.

Bund, Land und EU trugen Investitionskosten von 370 Millionen Euro

Die Montage von Wendelstein 7-X begann im April 2005: Ein Ring aus 50 supraleitenden, etwa 3,5 Meter hohen Magnetspulen ist das Kernstück der Anlage. Ihre speziellen Formen sind das Ergebnis ausgefeilter Optimierungsrechnungen der Abteilung „Stellarator-Theorie“ und ihrer über zehn-jährigen Suche nach einem besonders wärmeisolierenden magnetischen Käfig. Die Spulen sind auf ein stählernes Plasmagefäß aufgefädelt und von einer ringförmigen Stahlhülle umschlossen. In ihrem luftleer gepumpten Innenraum werden die Spulen mit flüssigem Helium auf Supraleitungs-temperatur bis nahe an den absoluten Nullpunkt abgekühlt. So verbrauchen sie nach dem Einschal-ten kaum Energie. Der von ihnen erzeugte Magnetfeldkäfig hält im Inneren des Plasmagefäßes das Forschungsobjekt der Wissenschaftler in Schwebe, das 30 Kubikmeter füllende ultra-dünne Plasma.

Die von Bund, Land und EU getragenen Investitionskosten für Wendelstein 7-X beliefen sich auf 370 Millionen Euro. Die Bauteile fertigten Firmen in ganz Europa; Aufträge im Wert von weit über 70 Millionen gingen an Unternehmen in der Region. Zahlreiche Forschungseinrichtungen im In- und Ausland waren am Aufbau der Anlage beteiligt. So trug im Rahmen der Helmholtz-Gemeinschaft Deutscher Forschungszentren das Karlsruher Institut für Technologie die Verantwortung für die Mikrowellen-Plasmaheizung; das Forschungszentrum Jülich baut Messgeräte und fertigte die aufwändigen Verbindungen der supraleitenden Magnetspulen. Den Einbau übernahmen Spezialisten der Polnischen Akademie der Wissenschaften in Krakau. Die US-amerikanischen Fusionsinstitute in Princeton, Oak Ridge und Los Alamos trugen unter anderem mit magnetischen Zusatzspulen und Messgeräten zur Ausrüstung von Wendelstein 7-X bei.

Prof. Dr. Thomas Klinger | Max-Planck-Institut für Plasmaphysik, Garching
Weitere Informationen:
https://www.mpg.de/9787501/wendelstein-7-X-kernfusion-stellarator

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Klein bestimmt über groß?
29.03.2017 | Max-Planck-Institut für Dynamik und Selbstorganisation

nachricht Quantenkommunikation: Wie man das Rauschen überlistet
29.03.2017 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten