Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

In Wendelstein 7-X wurde erstmals ein Helium-Plasma erzeugt

11.12.2015

Betrieb in der Greifswalder Fusionsanlage

Geduld und Mühe der Plasmaforscher haben sich gelohnt. Gut zehn Jahre nachdem die Montage der Fusionsanlage Wendelstein 7-X am Max-Planck-Institut für Plasmaphysik in Greifswald begonnen hatte, haben Physiker darin am 10. Dezember 2015 das erste Helium-Plasma erzeugt. Damit hat nach gut einem Jahr technischer Vorbereitungen und Tests planmäßig der Experimentierbetrieb begonnen. Anfang 2016 soll in der Anlage erstmals ein Wasserstoffplasma gezündet werden, wie es auch für eine Kernfusion benötig wird. Mit Wendelstein 7-X, der weltweit größten Fusionsanlage vom Typ Stellarator, möchten Forscher belegen, dass sich dieser Bautyp als Kraftwerk eignet.


Mit einem hellen Leuchten zeigt sich das erste Plasma in der Greifswalder Fusionsanlage Wendelstein 7-X. Es bestand aus Helium und erreichte eine Temperatur von rund einer Million Grad Celsius

© IPP


Eine Schleife für die Diagnostik: Ein Techniker baut in das Plasmagefäß von Wendelstein 7-X eine diamagnetische Spule ein. Mit diesem Instrument wird die Änderung des magnetischen Flusses, eine wichtige Kenngröße des Magnetfeldes für den Plasma-Einschluss, gemessen.

© IPP, Dag Hathiramani

Nach neun Jahren Bauzeit und über einer Million Montagestunden endeten im April 2014 die wesentlichen Konstruktionsarbeiten an Wendelstein 7-X. Seither liefen die Betriebsvorbereitungen. Nacheinander prüften Wissenschaftler und Techniker alle Komponenten der Fusionsanlage: das Vakuum in den Gefäßen, das Kühlsystem, die supraleitenden Spulen, das von ihnen erzeugte Magnetfeld, das Steuersystem sowie die Heizapparaturen und Messgeräte.

Am 10. Dezember war es dann soweit: Im Kontrollraum fuhr die Betriebsmannschaft das Magnetfeld hoch, mit dem das Plasma eingeschlossen wird, damit es nicht mit der Wand der Plasmakammer in Berührung kommt und sich abkühlt. Nun startete die computergeregelte Steuerung des Experiments. Sie speiste rund ein Milligramm Heliumgas in das Plasmagefäß ein, aus dem sie zuvor die Luft gepumpt hatten. Anschließend schaltete das Team die Mikrowellenheizung für einen kurzen 1,8-Megawatt-Puls an – und im Visier der eingebauten Kameras und Messgeräte zeigte sich das erste Plasma.

Erstes Wasserstoff-Plasma Ende Januar

„Wir beginnen mit einem Plasma aus dem Edelgas Helium. Erst im nächsten Jahr wechseln wir zu dem eigentlichen Untersuchungsobjekt, einem Wasserstoff-Plasma“, erläutert Thomas Klinger, Direktor am Max-Planck-Institut für Plasmaforschung und Projektleiter von Wendelstein 7-X: „Denn mit Helium ist der Plasmazustand leichter zu erreichen. Außerdem können wir mit Helium-Plasmen die Oberfläche des Plasmagefäßes reinigen.“

Das erste Plasma in der Maschine dauerte eine Zehntel-Sekunde und erreichte eine Temperatur von rund einer Million Grad. „Wir sind sehr zufrieden“, fasst Hans-Stephan Bosch, dessen Bereich für den Betrieb der Anlage zuständig ist, den Verlauf des ersten Experimentiertages zusammen: „Alles lief wie vorgesehen.“

In den nächsten experimentellen Schritten wollen die Forscher die Dauer der Plasmaentladungen verlängern und untersuchen, wie die Helium-Plasmen durch Mikrowellen am besten zu erzeugen und aufzuheizen sind. Nach einer Pause zum Jahreswechsel geht es im Januar mit Einschlussstudien weiter, bei denen die Forscher unter anderem untersuchen, wie gut das Heliumplasma im Magnetfeld eingeschlossen wird. Mit diesen Experimenten bereiten die Forscher die ersten Experimente mit Plasmen aus Wasserstoff vor, der in Fusionsexperimenten letztlich zu Helium verschmolzen werden soll.

Hintergrund

Ziel der Fusionsforschung ist es, ein klima- und umweltfreundliches Kraftwerk zu entwickeln. Ähnlich wie die Sonne soll es aus der Verschmelzung von Atomkernen Energie gewinnen. Weil das Fusionsfeuer erst bei Temperaturen über 100 Millionen Grad zündet, darf der Brennstoff – ein dünnes Wasserstoffplasma – nicht in Kontakt mit kalten Gefäßwänden kommen. Von Magnet-feldern gehalten, schwebt er nahezu berührungsfrei im Inneren einer Vakuumkammer. Für den magnetischen Käfig haben sich zwei verschiedene Bauweisen durchgesetzt, Tokamak und Stellarator. Beide Anlagentypen werden im IPP untersucht: In Garching läuft der Tokamak ASDEX Upgrade, in Greifswald seit heute der Stellarator Wendelstein 7-X.

Gegenwärtig trauen viel Wissenschaftler nur einem Tokamak – dem internationalen Testreaktor ITER, der in weltweiter Zusammenarbeit zurzeit in Cadarache aufgebaut wird – ein energielieferndes Plasma zu. Wendelstein 7-X, die weltweit größte Fusionsanlage vom Typ Stellarator, wird keine Energie erzeugen. Trotzdem soll die Anlage beweisen, dass auch Stellaratoren kraftwerkstauglich sind. Mit Wendelstein 7-X soll ein Plasma erstmals genauso gut eingeschlossen werden wie mit einem Tokamak. Und mit 30 Minuten langen Entladungen soll die Anlage das wesentliche Plus der Stellaratoren vorführen: die Fähigkeit zum Dauerbetrieb. Dagegen können Tokamaks ohne aufwändige Zusatzmaßnahmen lediglich in Pulsen arbeiten.

Bund, Land und EU trugen Investitionskosten von 370 Millionen Euro

Die Montage von Wendelstein 7-X begann im April 2005: Ein Ring aus 50 supraleitenden, etwa 3,5 Meter hohen Magnetspulen ist das Kernstück der Anlage. Ihre speziellen Formen sind das Ergebnis ausgefeilter Optimierungsrechnungen der Abteilung „Stellarator-Theorie“ und ihrer über zehn-jährigen Suche nach einem besonders wärmeisolierenden magnetischen Käfig. Die Spulen sind auf ein stählernes Plasmagefäß aufgefädelt und von einer ringförmigen Stahlhülle umschlossen. In ihrem luftleer gepumpten Innenraum werden die Spulen mit flüssigem Helium auf Supraleitungs-temperatur bis nahe an den absoluten Nullpunkt abgekühlt. So verbrauchen sie nach dem Einschal-ten kaum Energie. Der von ihnen erzeugte Magnetfeldkäfig hält im Inneren des Plasmagefäßes das Forschungsobjekt der Wissenschaftler in Schwebe, das 30 Kubikmeter füllende ultra-dünne Plasma.

Die von Bund, Land und EU getragenen Investitionskosten für Wendelstein 7-X beliefen sich auf 370 Millionen Euro. Die Bauteile fertigten Firmen in ganz Europa; Aufträge im Wert von weit über 70 Millionen gingen an Unternehmen in der Region. Zahlreiche Forschungseinrichtungen im In- und Ausland waren am Aufbau der Anlage beteiligt. So trug im Rahmen der Helmholtz-Gemeinschaft Deutscher Forschungszentren das Karlsruher Institut für Technologie die Verantwortung für die Mikrowellen-Plasmaheizung; das Forschungszentrum Jülich baut Messgeräte und fertigte die aufwändigen Verbindungen der supraleitenden Magnetspulen. Den Einbau übernahmen Spezialisten der Polnischen Akademie der Wissenschaften in Krakau. Die US-amerikanischen Fusionsinstitute in Princeton, Oak Ridge und Los Alamos trugen unter anderem mit magnetischen Zusatzspulen und Messgeräten zur Ausrüstung von Wendelstein 7-X bei.

Prof. Dr. Thomas Klinger | Max-Planck-Institut für Plasmaphysik, Garching
Weitere Informationen:
https://www.mpg.de/9787501/wendelstein-7-X-kernfusion-stellarator

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Max-Planck-Princeton-Partnerschaft in der Fusionsforschung bestätigt
23.11.2017 | Max-Planck-Institut für Plasmaphysik

nachricht Magnetfeld-Sensor Argus „sieht“ Kräfte im Bauteil
23.11.2017 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kinderanästhesie aktuell: Symposium für Ärzte und Pflegekräfte

23.11.2017 | Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Kinderanästhesie aktuell: Symposium für Ärzte und Pflegekräfte

23.11.2017 | Veranstaltungsnachrichten

Seminar „Leichtbau im Automobil- und Maschinenbau“ im Haus der Technik Berlin am 16. - 17. Januar 2018

23.11.2017 | Seminare Workshops

Biohausbau-Unternehmen Baufritz erhält von „ Capital“ die Auszeichnung „Beste Ausbilder Deutschlands“

23.11.2017 | Unternehmensmeldung