Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

In einem Quantenrennen ist jeder Gewinner und Verlierer zugleich

27.03.2017

Unser Verständnis der Welt baut größtenteils auf grundlegenden Wahrnehmungen auf, wie z.B. auf dem Aufeinanderfolgen von Ereignissen in einer wohl-definierten Ordnung. Solche eindeutigen Abfolgen sind in unserer Alltagswelt unabdingbar. In der Quantenwelt jedoch kann dieses Aufeinanderfolgen "durcheinandergebracht" werden: Unterschiedliche Reihenfolgen, in denen Quantenoperationen ablaufen, können trotzdem zugleich stattfinden – die Wissenschaft spricht dabei von "Superposition". Einem Team von PhysikerInnen um Philip Walther ist die erste experimentelle Quantifizierung einer solchen Superposition gelungen. Die Ergebnisse werden in "Science Advances" veröffentlicht.

Wenn WissenschafterInnen die Natur mittels physikalischer Gesetze beschreiben, setzen sie oft bei Erfahrungen aus dem Alltag an. In der Quantenwelt allerdings ist unsere herkömmliche Intuition nicht brauchbar. Kürzlich haben PhysikerInnen festgestellt, dass uns die Quantentheorie zwingt, selbst essentielle Konzepte wie z.B. die Ordnung, in der Dinge aufeinanderfolgen, zu hinterfragen.


Das Anwenden des Superpositionsprinzips auf die Bewegung eines Photons kann dieses gleichzeitig in zwei verschiedene Richtungen führen.

Copyright: Jonas Schmöle, Fakultät für Physik der Universität Wien

Das wird an folgendem Beispiel, einem Rennen zwischen zwei Freunden, Alice und Bob, deutlich: Im Alltag wird klarerweise jener Läufer zum Sieger gekürt, der die Ziellinie als erstes überquert. Unser gesunder Menschenverstand sagt uns daher, dass entweder Alice oder Bob gewinnt oder dass es ein Unentschieden gibt. Diese Argumentation ist in der Quantenwelt jedoch nicht immer anwendbar.

Tatsächlich erlaubt es die Quantenmechanik, jedem Läufer in ein- und demselben Rennen zu gewinnen und zu verlieren: Alice könnte die Ziellinie zugleich vor und nach Bob in einer "Quantensuperposition" erreichen, einer quantenmechanischen Überlagerung. Aber wie gelingt der Nachweis, dass jeder Läufer in Superposition gewonnen hat? Ein Teil der Herausforderung liegt nämlich darin, dass das Rennen laut Quantenmechanik "kollabiert", sobald wir es beobachten. Das bedeutet, dass wir Alice entweder als Gewinnerin oder Verliererin sehen.

Ein Zeuge für durcheinandergebrachte Abfolgen von Operationen

Eine Gruppe von PhysikerInnen unter der Leitung von Philip Walther an der Universität Wien führte nun eine neue Messung durch, auch "kausaler Zeuge" genannt, mit welcher es gelingt, Alice dabei zu beobachten, wie sie das Rennen zugleich gewinnt und verliert. Mit der neuen Methode, entwickelt von einer Gruppe um Caslav Brukner, konnten die PhysikerInnen sogar quantitativ bestimmen, bis zu welchem Ausmaß die zwei Situationen tatsächlich in Superposition waren.

Anstatt ein mikroskopisches Quantenrennen abzuhalten, schickten die PhysikerInnen in ihren Experimenten jeweils ein Photon – ein Teilchen aus Licht – in Superposition in zwei verschiedene Richtungen zugleich. Jeder dieser Pfade wurde sodann in unterschiedlichen Reihenfolgen durch zwei verschiedene Quantenoperationen geleitet. Um die Methode des kausalen Zeugen anwenden zu können, entwarfen die PhysikerInnen ein Schema, mit dem sie Information über die Superposition der Reihenfolgen gewinnen konnten, ohne dabei die Superposition zu zerstören.

Dies erreichten sie, indem sie ein anderes Quantensystem verwendeten, um – salopp formuliert – die Fahne zu schwenken, sobald das Photon an einer der Quantenoperationen vorbeikam. Ihr neuer Trick ermöglichte den ForscherInnen Information ausschließlich über die gesamte Superposition und nicht konkret über die Reihenfolge der Operationen auszulesen. Ihre Messresultate bestätigen, dass die Photonen wirklich durch beide Quantenoperationen in zwei verschiedenen Reihenfolgen zugleich hindurchgegangen waren.

Künftige Anwendungen

Die Tatsache, dass die Reihenfolge der Quantenoperationen in eine Quantensuperposition gebracht werden kann, eröffnet der Quantenforschung neue Möglichkeiten. Dies ist bereits an der großen Anzahl von theoretischen Vorschlägen zur Rolle der "kausalen Zusammenhänge" in der Quantenmechanik erkennbar. Diese Vorschläge in Experimente im Labor zu übertragen ist jedoch eine Herausforderung. "Unsere experimentelle Demonstration ist ein bedeutender Schritt in diesem Gebiet, da sie zeigt, wie Information aus dem Inneren der Quantenprozesse gewonnen werden kann, ohne deren Quantennatur zu zerstören", so Giulia Rubino, Erstautorin der Studie.

Das nächste Ziel der Gruppe ist es, neue technologische Fortschritte auszunutzen, um Superpositionen von noch komplexeren Prozessen zu schaffen. Dies wird ihnen ermöglichen, tiefere Einblicke in das Zusammenspiel zwischen kausalen Zusammenhängen und Quantenmechanik zu gewinnen. Außerdem ist es ein interessanter Ansatz, um Aufgaben jenseits der Möglichkeiten selbst eines Standard-Quantencomputers mit einer fixen Abfolge von Rechenoperationen zu optimieren.

Publikation in "Science Advances": "Experimental Verification of an Indefinite Causal Order", Giulia Rubino, Lee A. Rozema, Adrien Feix, Mateus Araújo, Jonas M. Zeuner, Lorenzo M. Procopio, Caslav Brukner, and Philip Walther Science Advances (2017)
DOI: 10.1126/sciadv.1602589

http://www.univie.ac.at/gruppe-walther/
http://www.vcq.quantum.at

Wissenschafliche Kontakte
Giulia Rubino, MSc.
Quantum Information Science and Quantum Computation
Fakultät für Physik der Universität Wien
1090 Wien, Boltzmanngasse 5
T +43-1-4277-725 63
giulia.rubino@univie.ac.at

Univ.-Prof. Dr. Philip Walther
Quantum Information Science and Quantum Computation
Fakultät für Physik der Universität Wien
1090 Wien, Boltzmanngasse 5
T +43-1-4277-72560
M +43-664-60277-72560
philip.walther@univie.ac.at

Rückfragehinweise
Mag. Alexandra Frey
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 33
M +43-664-602 77-175 33
alexandra.frey@univie.ac.at

Sven Hartwig
Leiter Öffentlichkeit & Kommunikation
Österreichische Akademie der Wissenschaften
1010 Wien, Dr. Ignaz Seipel-Platz 2
T +43 1 51581-13 31
sven.hartwig@oeaw.ac.at

Offen für Neues. Seit 1365.
Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 19 Fakultäten und Zentren arbeiten rund 9.600 MitarbeiterInnen, davon 6.800 WissenschafterInnen. Die Universität Wien ist damit die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 94.000 nationale und internationale Studierende inskribiert. Mit über 175 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. http://www.univie.ac.at

Österreichische Akademie der Wissenschaften
Forschen für morgen.
Die Österreichische Akademie der Wissenschaften hat die gesetzliche Aufgabe, „die Wissenschaft in jeder Hinsicht zu fördern“. 1847 als Gelehrtengesellschaft gegründet, steht sie mit ihren heute über 780 Mitgliedern, 28 Forschungsinstituten sowie rund 1.450 Mitarbeiter/innen für innovative Grundlagenforschung, interdisziplinären Wissensaustausch und die Vermittlung neuer Erkenntnisse – mit dem Ziel zum wissenschaftlichen und gesamtgesellschaftlichen Fortschritt beizutragen. http://www.oeaw.ac.at

Stephan Brodicky | Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Alternder Stern bläst Materie von sich
21.09.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Granulare Materie blitzschnell im Bild

21.09.2017 | Verfahrenstechnologie

Hochpräzise Verschaltung in der Hirnrinde

21.09.2017 | Biowissenschaften Chemie

Überleben auf der Schneeball-Erde

21.09.2017 | Biowissenschaften Chemie