Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

ICARUS-Experiment gestartet: ThyssenKrupp VDM hilft bei der Suche nach Geister-Teilchen aus dem Weltraum

21.06.2010
Die so genannten Neutrinos werden auch als Geister-Teilchen bezeichnet, weil sie durch Körper und riesige Materieschichten strömen, ohne mit anderen Partikeln zusammen zu stoßen. Um ihr Rätsel zu lösen, ist eine Versuchsanlage in Italien aufgebaut worden. Die Messgeräte sind dabei unter anderem aus Hochleistungswerkstoffen der ThyssenKrupp VDM gefertigt.

Ununterbrochen und für das menschliche Auge unsichtbar fallen pro Sekunde und Quadratzentimeter etwa 60 Milliarden winziger Elementar-Teilchen auf die Erdoberfläche und durchdringen unseren Planeten. Diese so genannten Neutrinos werden auch als Geister-Teilchen bezeichnet, weil sie durch Körper und riesige Materieschichten strömen, ohne mit anderen Partikeln zusammen zu stoßen.

„Von allen bekannten Teilchen sind Neutrinos die mysteriösesten“, sind Wissenschaftler überzeugt. Um ihr Rätsel zu lösen, ist eine Versuchsanlage in Italien aufgebaut worden. Die Messgeräte sind dabei unter anderem aus Hochleistungswerkstoffen der ThyssenKrupp VDM gefertigt. Nach jahrelangen Vorbereitungsarbeiten und Tests ist nach Angaben der Wissenschaftler jetzt mit dem bahnbrechenden Projekt begonnen worden. Die Forscher erhoffen sich von diesem Experiment, das unter 1400 Meter Fels im weltgrößten unterirdischen Labor für Astroteilchenphysik stattfindet, neue Erkenntnisse über Vergangenheit und Zukunft des Universums.

Neutrinos entstehen bei nuklearen Reaktionen, wie sie auf der Sonne und bei Sternenexplosionen stattfinden. Da die geheimnisvollen Teilchen Materie durchqueren, ohne anzuecken oder Spuren zu hinterlassen, ist ihr Nachweis kaum möglich. Auf Grund dieser Eigenschaften sind große und extrem sensible Messgeräte (Detektoren) erforderlich, die die winzigen Teilchen quasi fotografieren sollen. Ein solches Gerät ist der ICARUS-Teilchendetektor, für den die ThyssenKrupp VDM rund 70 Tonnen des Hochleistungswerkstoffs Pernifer 36 in Form von Bandblechen lieferte. Das Wissenschaftsprogramm ICARUS steht für „Imaging cosmic and rare underground signals“. Kernstück ist ein 80 Meter langes und 15 Meter hohes Messgerät, das vom italienischen „Laboratori Nazionali del Gran Sasso“ (LNGS) betrieben wird. 600 bis 800 Wissenschaftler aus 25 Ländern kommen jedes Jahr hierher, um Experimente durchzuführen. Damit die Untersuchungen frei von störenden Umwelteinflüssen erfolgen können, liegt der 600 Tonnen schwere Detektor tief unter der Erde des Gran Sasso, einem Gebirgsmassiv in den Abruzzen etwa 120 Kilometer südlich von Rom.

In diese unterirdischen Versuchslabore sendet seit August 2006 die weltweit anerkannte Genfer Kernforschungseinrichtung CERN (Conseil Européen pour la Recherche Nucléaire) phasenweise künstliche Neutrinos. Dort werden in Teilchenbeschleunigern Energien wie bei einer Kernfusion erzeugt und die dabei freigesetzten Neutrinos auf eine Reise geschickt. Die rund 730 Kilometer zum ICARUS-Detektor ausschließlich durch das Erdinnere legen die Geisterteilchen in 2,5 Millisekunden zurück.

Das Messgerät ist extremen Anforderungen ausgesetzt. Deshalb kam hier ein spezieller Hochleistungswerkstoff, die Nickellegierung Pernifer 36 zum Einsatz, die sich durch besonders geringe thermische Ausdehnung, günstige Verarbeitungseigenschaften und hervorragende mechanische Eigenschaften bei extrem tiefen Temperaturen auszeichnet. „Der komplette Innenteil des Detektors ist aus Pernifer 36“, berichtet Francesco Arneodo von den LNGS. Gefüllt ist der Detektor mit dem flüssigen Edelgas Argon. Treffen Neutrinos in diese sogenannte Blasenkammer, entstehen - durch Reaktion mit dem Edelgas - Blitze. Innerhalb eines Augenblicks reagieren mehrere Kameras auf die Blitze. Ein dreidimensionales Bild der Neutrinovorkommen entsteht. „Für die Geometrie des Detektors, der durch das flüssige Argon auf minus 186 Grad heruntergekühlt ist, ist der thermische Ausdehnungskoeffizient des Pernifer 36 enorm wichtig“, erläutert Dr. Bernd de Boer, Leiter Anwendungstechnik der ThyssenKrupp VDM: „Pernifer 36 wird bei tiefen Temperaturen nicht spröde und die Ausdehnung des Materials liegt bei Temperaturschwankungen praktisch bei Null.“

Für die Wissenschaftler werden mit der Erforschung der Neutrinos auch Geheimnisse aus dem Universum gelüftet. Da die rätselhaften Teilchen Ewigkeiten ungebremst durch den Weltraum fliegen, können sie Informationen über zurückliegende Vorgänge im All oder die so genannten „Schwarzen Löcher“ liefern und sind somit Botschafter des Kosmos. „Die wesentlichen Ergebnisse der Untersuchungen stehen noch aus“, sagt Arneodo, fügt aber hinzu: „Mit Studien über das Verhalten von flüssigem Argon liefert ICARUS bereits heute einen wesentlichen Beitrag für die Elementarteilchenphysik.“ Jetzt teilten die Kernphysiker mit, dass Ende Mai die Detektoren hochgefahren wurden und damit das eigentliche ICARUS-Experiment gestartet

Die ThyssenKrupp VDM (Werdohl) ist einer der weltweit führenden Anbieter von Hochleistungswerkstoffen, Sonderlegierungen und Titan-Halbzeugen und ist insbesondere in den Segmenten Anlagenbau, Energiegewinnung, Öl und Gas, der Elektro- und Elektronikindustrie sowie Automotive-, Luft- und Raumfahrtindustrie tätig. Das Unternehmen verfügt über Produktionsstätten in Werdohl, Altena, Unna, Siegen und Essen sowie ein Vertriebsbüro in Frankfurt/Main. Hinzu kommen zwei Werke in den USA sowie eine weltweite Vertriebsorganisation. Im Geschäftsjahr 2008/09 erreichte das Unternehmen mit rund 1.700 Mitarbeitern einen Umsatz von mehr als 740 Millionen Euro.

Ansprechpartner:
Erik Walner
ThyssenKrupp AG
Corporate Center Communications, Strategy & Technology
Telefon: +49 203 52-45130
Telefax: +49 203 52-45132
E-mail: erik.walner@thyssenkrupp.com

Erik Walner | idw
Weitere Informationen:
http://www.thyssenkrupp.com

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics