Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

HZDR-Physiker entdecken optimale Bedingungen für Laserplasma-Beschleunigung

08.09.2017

Klassische Elektronenbeschleuniger haben sich zu einem unverzichtbaren Instrument der modernen Forschung entwickelt. Doch sogar kleinere Varianten dieser Super-Mikroskope umfassen die Größe eines Fußballfeldes. Eine Alternative, die wesentlich weniger Platz benötigt und viel höhere Spitzenströme erzielen kann, bietet die Laserplasma-Beschleunigung. Das könnte die Basis für die nächste Generation kompakter Lichtquellen liefern. Bislang war es aber schwer, einen verlässlichen und stabilen Elektronenstrahl mit den Laserbeschleunigern zu erzeugen: die Voraussetzung für mögliche Anwendungen. HZDR-Physiker konnten eine Methode entwickeln, um die Stabilität und die Qualität des Strahls zu erhöhen.

An sich scheint das Prinzip der Laser-Beschleunigung relativ einfach: Ein gebündelter, ultrastarker Laserstrahl trifft auf einen Hauch von Gas, wodurch sich sofort ein Plasma – ein ionisierter Materiezustand oder, anders ausgedrückt, ein brodelndes Gemisch geladener Teilchen – bildet.


In einer Targetkammer trifft der Lichtpuls eines Hochleistungslasers auf eine Gaswolke. Das beschleunigt Elektronen auf einer Strecke kürzer als eine Stiftbreite auf nahezu Lichtgeschwindigkeit.

HZDR / F. Bierstedt

Die Wucht des Lichtpulses entreißt den Atomen die Elektronen und kreiert eine Art Blase im Plasma, die ein starkes elektrisches Feld enthält. Dieses Feld, das der Laserpuls wie eine Heckwelle hinter sich herzieht, schließt die Elektronen ein und beschleunigt sie auf nahezu Lichtgeschwindigkeit.

„Mithilfe der rasanten Teilchen können wir Röntgenstrahlung erzeugen“, erläutert Dr. Arie Irman vom Institut für Strahlenphysik am Helmholtz-Zentrum Dresden-Rossendorf (HZDR) den Zweck des Vorgangs. „Wenn wir diese Elektronenbündel zum Beispiel mit einem weiteren Laserstrahl zusammenprallen lassen, entstehen helle, kurze Röntgenblitze – ein überaus wertvolles Forschungswerkzeug, um extreme Materiezustände zu untersuchen.“

Rechte Zeit + Rechter Ort = Perfekte Beschleunigung

Die Stärke der sekundären Strahlung hängt dabei vor allem vom elektrischen Strom der Teilchen ab. Der Strom wiederum wird maßgeblich von der Anzahl der eingespeisten Elektronen bestimmt. Die Beschleunigung per Laserkraft hält deshalb ein großes Potential, da sie im Vergleich zur konventionellen Variante deutlich höhere Spitzenströme erreicht. Jedoch greift in diesem Fall der Beam-Loading-Effekt, wie Physiker Jurjen Pieter Couperus einschränkt:

„Diese höheren Ströme brauchen so viel elektrische Ladung, dass die Felder des Elektronenbündels die Welle überlagern, wodurch sich der Strahl verformt. Das Bündel wird in die Länge gezogen und dadurch nicht richtig beschleunigt. Die Elektronen haben deshalb unterschiedliche Energien und damit unterschiedliche Qualität.“

Um sie aber als Instrument für andere Experimente nutzen zu können, muss jeder Strahl die gleichen Parameter aufweisen. „Die Elektronen müssen zur rechten Zeit am rechten Ort sein“, fasst der Doktorand aus Irmans Team zusammen.

Erstmals konnten die beiden Forscher zusammen mit weiteren HZDR-Kollegen zeigen, wie sich der Beam-Loading-Effekt für die Verbesserung der Strahlqualität ausnutzen lässt. Das Helium, das üblicherweise mit dem Laserpuls beschossen wird, versetzten sie dafür mit einem kleinen Teil an Stickstoff. „Wir können die Anzahl der eingespeisten Elektronen kontrollieren, indem wir die Konzentration des Stickstoffs variieren“, erklärt Irman.

„In den Experimenten stellten wir fest, dass bei einer Ladung von etwa 300 Picocoulomb optimale Bedingungen herrschen. Abweichungen davon – indem wir mehr oder weniger Elektronen in die Welle laden – führen zu einer breiteren Energieverteilung, wodurch die Qualität des Strahls leidet.“

Wie die Berechnungen der Physiker gezeigt haben, führten die optimalen Bedingungen bei ihren Versuchen zu einem Spitzenstrom von rund 50 Kiloampere. „Für einen ICE fließen durch eine Standardoberleitung der Deutschen Bahn, zum Vergleich, nur etwa 0,6 Kiloampere“, erklärt Jurjen Pieter Couperus, der sich aber sicher ist, dass sich der Rekord noch ausbauen lässt.

„Mit einem Laserpuls im Petawatt-Bereich, den unser Hochintensitätslaser DRACO erreichen kann, sollte sich mit unseren Parametern ein hochwertiger Elektronenstrahl mit einem Spitzenstrom von 150 Kiloampere erzeugen lassen. Das übertrifft moderne Großforschungs-Beschleunigeranlagen um circa zwei Größenordnungen.“ Nach Ansicht der Dresdner Forscher würde das die Tür zur nächsten Generation kompakter Strahlungsquellen weit aufstoßen.

Publikation:
J. P. Couperus, R. Pausch, A. Köhler, O. Zarini, J. M. Krämer, M. Garten, A. Huebl, R. Gebhardt, U. Helbig, S. Bock, K. Zeil, A. Debus, M. Bussmann, U. Schramm, A. Irman: Demonstration of a beam loaded nanocoulomb-class laser wakefield accelerator, in Nature Communications, 2017 (DOI: 10.1038/s41467-017-00592-7)

Weitere Informationen:
Dr. Arie Irman | Jurjen Pieter Couperus
Institut für Strahlenphysik am HZDR
Tel. +49 351 260-3043 | 3005
E-Mail: a.irman@hzdr.de | j.couperus@hzdr.de

Medienkontakt:
Simon Schmitt | Wissenschaftsredakteur
Tel. +49 351 260-3400 | E-Mail: s.schmitt@hzdr.de

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
Zur Beantwortung dieser wissenschaftlichen Fragen betreibt das HZDR große Infrastrukturen, die auch von externen Messgästen genutzt werden: Ionenstrahlzentrum, Hochfeld-Magnetlabor Dresden und ELBE-Zentrum für Hochleistungs-Strahlenquellen. Das HZDR ist Mitglied der Helmholtz-Gemeinschaft, hat fünf Standorte (Dresden, Freiberg, Grenoble, Hamburg, Leipzig) und beschäftigt rund 1.100 Mitarbeiter – davon etwa 500 Wissenschaftler inklusive 150 Doktoranden.

Simon Schmitt | Helmholtz-Zentrum Dresden-Rossendorf
Weitere Informationen:
http://www.hzdr.de/

Weitere Berichte zu: Elektronen Helmholtz-Zentrum Laserpuls Laserstrahl Plasma Strahl Strahlenphysik Strom

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics