Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hydrogen offers a new way to study the Moon

16.10.2009
The Moon is a surprisingly strong source of hydrogen atoms. That is the surprise discovery from the Swedish Institute of Space Physic's instrument SARA on board the Indian Chandrayaan-1 lunar orbiter. It gives scientists an interesting new way to study both the Moon and any other airless bodies in the solar system.

According to conventional wisdom, the lunar surface is a loose collection of irregular dust grains. Any particle that hits it should bounce between the grains and be absorbed. But the new results clearly show that one out of every five protons incoming from the solar wind rebounds from the Moon's surface. In the process, the proton joins with an electron to become an atom of hydrogen.

"We didn't expect to see this at all," says Stas Barabash, Swedish Institute of Space Physics (IRF), who is the European Principal Investigator for the SARA (Sub-keV Atom Reflecting Analyzer) instrument, which made the discovery.

"It's an amazing discovery for the planetary scientific community in general and for lunar science in particular," says Anil Bhardwaj, who is the Indian Principal Investigator from the Space Physics Laboratory, Vikram Sarabhai Space Centre, Trivandrum. SARA was one of three instruments that the European Space Agency (ESA) contributed to Chandrayaan-1, the lunar orbiter that completed its mission in August 2009, and was built jointly by scientific groups from Sweden, India, Japan and Switzerland.

Although Barabash and his colleagues do not know what is causing the Moon to act as a hydrogen mirror, the discovery paves the way for a new type of picture to be made of the lunar surface. This is because the hydrogen atoms shoot off with speeds of around 200 km/s and so escape without being deflected by the Moon's weak gravity. Also, because hydrogen is electrically neutral, it is not diverted by the magnetic fields in space. So the atoms fly in straight lines from the surface of the Moon, just like photons of light. In principle, each detection can be traced back to its origin and an image of the surface can be made. The areas that emit most hydrogen will show up the brightest.

Barabash and his team are currently analysing the data to see if they can make such pictures, in order to look for so-called lunar magnetic anomalies. Whilst the Moon does not generate a global magnetic field, some lunar rocks are magnetised. These generate magnetic bubbles that deflect incoming protons away into surrounding regions. In a hydrogen image, the magnetic rocks will therefore appear dark.

The incoming protons are part of the solar wind, a constant stream of particles given off by the Sun. They collide with every celestial object in the Solar System but are usually stopped by the object's atmosphere. On objects without such a natural shield, for example asteroids or the planet Mercury, the solar wind reaches the ground. The SARA team expects that these objects too will reflect many of the incoming protons back into space as hydrogen atoms.

This knowledge provides timely information for the scientists and engineers who are readying ESA's BepiColombo mission to Mercury. The spacecraft will be carrying two similar instruments to SARA and may find that the inner-most planet is reflecting more hydrogen than the Moon because the solar wind is more concentrated closer to the Sun. In the meantime, the SARA team is combing the lunar data for insight, and puzzling over just why the Moon is so good at reflecting hydrogen.

The SARA instrument was built jointly by the Swedish Institute of Space Physics, Kiruna, Sweden; the Vikram Sarabhai Space Centre, Trivandrum, India; University of Bern, Switzerland; and the Institute of Space and Astronautical Science, Sagamihara, Japan.

Notes to Editors:

"Extremely high reflection of solar wind protons as neutral hydrogen atoms from regolith in space" by Martin Wieser, Stas Barabash, Yoshifumi Futaana, Mats Holmström, Anil Bhardwaj, R. Sridharan, M.B. Dhanya, Peter Wurz, Audrey Schaufelberger, Kazushi Asamura will be published in a forthcoming issue of Planetary and Space Science and is now available online: Planetary and Space Science (2009), doi: 10.1016/j.pss.2009.09.1210

More information:
* Dr Martin Wieser, Swedish Institute of Space Physics, tel. +46-980-79198, wieser@irf.se

* Prof. Stas Barabash, Swedish Institute of Space Physics, tel. +46-980-79122, stas@irf.se

* Rick McGregor, Information Officer, Swedish Institute of Space Physics, tel. +46-980-79178, rick@irf.se

Rick McGregor | idw
Weitere Informationen:
http://dx.doi.org/10.1016/j.pss.2009.09.012
http://www.irf.se/
http://www.irf.se/Topical/?dbfile=sara&dbsec=Administration

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Laser-Metronom ermöglicht Rekord-Synchronisation
12.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht VLT auf der Suche nach Planeten im Sternsystem Alpha Centauri
10.01.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Im Focus: Der Klang des Ozeans

Umfassende Langzeitstudie zur Geräuschkulisse im Südpolarmeer veröffentlicht

Fast drei Jahre lang haben AWI-Wissenschaftler mit Unterwasser-Mikrofonen in das Südpolarmeer hineingehorcht und einen „Chor“ aus Walen und Robben vernommen....

Im Focus: Wie man eine 80t schwere Betonschale aufbläst

An der TU Wien wurde eine Alternative zu teuren und aufwendigen Schalungen für Kuppelbauten entwickelt, die nun in einem Testbauwerk für die ÖBB-Infrastruktur umgesetzt wird.

Die Schalung für Kuppelbauten aus Beton ist normalerweise aufwändig und teuer. Eine mögliche kostengünstige und ressourcenschonende Alternative bietet die an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

Leipziger Biogas-Fachgespräch lädt zum "Branchengespräch Biogas2020+" nach Nossen

11.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Feinstaub weckt schlafende Viren in der Lunge

16.01.2017 | Biowissenschaften Chemie

Energieeffizienter Gebäudebetrieb: Monitoring-Plattform MONDAS identifiziert Einsparpotenzial

16.01.2017 | Messenachrichten

Nervenkrankheit ALS: Mehr als nur ein Motor-Problem im Gehirn?

16.01.2017 | Biowissenschaften Chemie