Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hybridsysteme: So werden Quanten alltagsreif

03.03.2015

Kommen Quantencomputer, Quantenhandys und Quantenmessgeräte? Große Hoffnungen liegen auf der Verbindung verschiedener Quantentechnologien zu Quanten-Hybridsystemen.

Noch gibt es im Supermarkt keine Quanten-Geräte zu kaufen, auch wenn die Quantentechnologie in den letzten Jahren große Fortschritte gemacht hat. Anwendungsideen gäbe es viele: Quantencomputer würden unsere heutigen Rechner drastisch übertreffen, auch in der Kommunikations- und in der Messtechnik könnten Quantentechnologien großen Nutzen bringen.


Atome, Photonen, Schaltkreise: Unterschiedliche Quantensysteme haben unterschiedliche Vor- und Nachteile.

TU Wien

Dass es noch nicht ganz so weit ist, liegt daran, dass jedes Quantensystem – vom einzelnen Lichtteilchen bis zum Supraleiter – gewisse Nachteile mit sich bringt. Eine mögliche Lösung sind daher hybride Quantentechnologien, die aus zwei oder mehreren verschiedenen Systemen bestehen und die Vorteile der einzelnen Bestandteile verbinden.

Auch an der TU Wien wird daran geforscht: An theoretischen Untersuchungen von Hybrid-Systemen arbeitet Peter Rabl, Experimente dazu kommen von den Teams rund um Jörg Schmiedmayer und Johannes Majer (alle Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien). Den aktuellen Stand fassen die TU Wissenschaftler gemeinsam mit Fachkollegen nun in einem Perspective-Artikel im Fachjournal „PNAS“ zusammen.

In zwei Zuständen gleichzeitig

„Eine ganz entscheidende Eigenschaft von Quantensystemen ist, dass sie sich in unterschiedlichen Zuständen gleichzeitig befinden können“, erklärt Prof. Jörg Schmiedmayer vom Atominstitut der TU Wien. In der klassischen Welt, die wir im Alltag erleben, hat jedes Objekt einen eindeutigen Zustand, in der Quantenwelt ist das anders – dort können sich Objekte in unterschiedlichen Zuständen gleichzeitig befinden, zumindest solange man ihn nicht exakt misst.

Für zukünftige Computer bietet das tolle Möglichkeiten: Unsere heutigen Rechner kennen nur die Zustände null oder eins. Ein Quantencomputer hingegen könnte mit beliebigen Überlagerungen von null und eins arbeiten und viele Möglichkeiten gleichzeitig verarbeiten, die ein klassischer Computer mühsam nacheinander abarbeiten muss.

Überall Vor- und Nachteile

Solche Quanten-Überlagerungszustände lassen sich heute mit ganz unterschiedlichen physikalischen Systemen studieren: „Photonen können gleichzeitig horizontal und vertikal schwingen, in einem supraleitenden Schwingkreis kann der Strom gleichzeitig rechtsherum und linksherum fließen, der Drehimpuls von eingefangenen Ionen kann gleichzeitig in unterschiedliche Richtungen zeigen“, erklärt Schmiedmayer. „Wir haben heute viele technische Möglichkeiten zur Verfügung, doch alle haben Vor- und Nachteile.“

So lässt sich etwa mit freien Photonen Information ganz ausgezeichnet übertragen – auf einer Funkstrecke, oder auch im Glasfaserkabel. Speichern kann man diese Photonen allerdings nicht. Für die Speicherung von Information sind beispielsweise Atome geeignet, die in elektromagnetischen Feldern festgehalten werden.

Auf die Kopplung kommt es an

Das Problem dabei ist die Kopplung der Quantensysteme an die Außenwelt. Je stärker ein Quantenobjekt mit dem Rest der Welt wechselwirkt, umso leichter gehen Überlagerungszustände verloren. Am längsten leben solche Quantenzustände in Systemen, die möglichst gut von der Umwelt abgeschirmt sind – doch dann kann man die Zustände nur schwer verändern, ablesen oder für Quanten-Rechnungen verwenden.

„Genau deshalb ist es wichtig, unterschiedliche Quantensysteme miteinander zu kombinieren“, sagt Jörg Schmiedmayer. Eine Möglichkeit ist die Verbindung von Mikrowellen und Stickstoffatomen, die in kleine Diamanten eingebaut sind – damit konnte Johannes Majer vom Atominstitut der TU Wien bereits große Erfolge erzielen: Die Mikrowellen erlauben eine schnelle Manipulation des Systems, die Stickstoffatome sorgen für die nötige Speicher-Stabilität.

Eine andere Möglichkeit kommt aus der Nanotechnologie: Winzige schwingende Hebel, auf denen ein Spiegel befestigt ist, können mechanische Vibrationen und die Schwingung von Lichtwellen miteinander koppeln. Die Spins von Atomkernen lassen sich über Sekunden aufbewahren – eine Ewigkeit, in Quantenmaßstäben. Um mit ihnen arbeiten zu können, kann man sie an die Spins von Elektronen koppeln.

„Man wird solche Hybridsysteme nicht nur für Quantencomputer brauchen, sondern auch für Quantenkommunikation, oder Quanten-Messgeräte“, ist Schmiedmayer sicher. „Bei einer Atomuhr beispielsweise benötigt man ein gut abgeschirmtes Quantensystem, das den Takt präzise hält, und ein anderes, mit dem es System bei Bedarf gekoppelt und ausgelesen werden kann.“

Design der passenden Wechselwirkung

Entscheidend ist, die Wechselwirkungen zwischen unterschiedlichen Quantensystemen sehr genau zu kennen – und genau darin liegt die Schwierigkeit. „Die Grundprinzipien dieser Wechselwirkungen haben wir mittlerweile gut verstanden“, meint Jörg Schmiedmayer. „So lässt sich heute sagen, woran es liegt, dass manche Kombinationen besser als andere funktionieren, oder gegen welche elektromagnetischen Felder man ein Quantensystem speziell abschirmen muss. Doch zweifellos gibt es hier noch viel Forschungsarbeit zu erledigen.“

Wie schnell Quantentechnologien tatsächlich in unseren Alltag einziehen werden, lässt sich aus heutiger Sicht schwer abschätzen. Klar ist für Jörg Schmiedmayer allerdings: „Irgendwann kommen die Quantentechnologien – und wenn sie kommen, dann werden es sicher hybride Quantensysteme sein.“

Das Paper erscheint in der dieswöchigen "Early Edition" in PNAS: www.PNAS.org

Rückfragehinweise:

Prof. Peter Rabl
Atominstitut, Vienna Center for Quantum Science and Technology (VCQ)
Technische Universität Wien
Stadionallee 2, 1020 Wien
T: +43-1-58801-141830
peter.rabl@tuwien.ac.at

Prof. Jörg Schmiedmayer
Atominstitut, Vienna Center for Quantum Science and Technology (VCQ)
Technische Universität Wien
Stadionallee 2, 1020 Wien
T: +43-1-58801-141801
hannes-joerg.schmiedmayer@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Magnetische Kontrolle per Handzeichen: Team entwickelt elektronische „Haut“ für virtuelle Realität
22.01.2018 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Vollmond-Dreierlei am 31. Januar 2018
22.01.2018 | Max-Planck-Institut für Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Simulation: Neuartiger zweidimensionaler Schaltkreis funktioniert mit magnetischen Quantenteilchen

22.01.2018 | Physik Astronomie

Vogelmonitoring leicht gemacht: Erfassung der Brutvögel wird digitalisiert

22.01.2018 | Ökologie Umwelt- Naturschutz

Vollmond-Dreierlei am 31. Januar 2018

22.01.2018 | Physik Astronomie