Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

On the hunt for dark matter

09.11.2012
Ceremonial dedication of the PRISMA Cluster of Excellence / EUR 35 million to promote top-level research in particle and hadron physics

Johannes Gutenberg University Mainz (JGU) inaugurated its "Precision Physics, Fundamental Interactions and Structure of Matter" (PRISMA) Cluster of Excellence.

About 250 scientists have now officially begun their work in the new research association, which was approved in the most recent phase of the German Excellence Initiative by the German federal and state governments. Over the next five years, the cluster will be funded with about EUR 35 million from the German government, the state of Rhineland-Palatinate, and Johannes Gutenberg University Mainz for top-level research into particle and hadron physics. Mainz has thus established itself as the center for particle and hadron physics in Germany and the world.

"We are very proud of the achievements of the PRISMA Cluster of Excellence in view of the tough competition we faced from other universities throughout Germany," said the President of Johannes Gutenberg University Mainz, Professor Dr. Georg Krausch. The fact that our core research in particle and hadron physics performed so well in the Excellence Initiative illustrates the international standing of the scientists working at JGU. I would like to express my utmost appreciation and deep gratitude to everyone involved for the great performance and commitment. PRISMA is composed of leading research groups whose global scientific reputation is well-established with publications, awards, and their excellent positions in national and international rankings. For example, the DFG Funding Atlas 2012 shows that Physics and Mathematics at Mainz University attract the highest levels of third-party funding in Germany. "Moreover, its success also confirms that we are proceeding in the right direction by focusing on science and research at our university," the President continued. "The additional funding from the Excellence Initiative provides our university with an excellent foundation to continue down this path, as will be reflected by further success in such future competitions."

The scientists involved in PRISMA pursue the fundamental questions about the structure of matter and the fundamental forces at work in the universe, including the experimental detectability of dark matter or the general creation of matter. The setting up and operation of large research facilities in Mainz for the international community of particle and hadron physicists are specifically intended to answer such questions. Approximately EUR 10 million are planned to be invested in the construction of the novel particle accelerator MESA, i.e., the Mainz Energy-Recovering Superconducting Accelerator. What is particularly innovative here is that MESA can achieve immense intensity at much lower energy costs compared to conventional accelerators. "MESA is the first of its kind in the world," said Professor Dr. Hartmut Wittig, one of the two PRISMA spokespersons, who hopes to find experimental evidence of the nature of dark matter in the universe using the new accelerator. "Specifically, we want to use MESA to track down the dark photon, which mediates the reaction between the visible matter known to us and dark matter."

The construction of an international center for theoretical physics, the so-called Mainz Institute for Theoretical Physics (MITP), is already in full swing. Researchers from the international community will be able to conduct research programs and workshops on current issues there. In addition, the MITP will offer events on exciting developments in particle physics, astrophysics, and cosmology to the general public. "There is nothing like it yet in Germany," the other PRISMA spokesperson and designated director of the MITP, Professor Dr. Matthias Neubert, said. "The establishment of the MITP will allow us to fill a gap in the German research landscape."

An additional step is the expansion of the proven research reactor TRIGA into an international research facility. This will also enable PRISMA researchers to participate extensively in important experiments around the world. The most noteworthy experiments include the ATLAS experiment at the European research center CERN in Switzerland, the XENON experiment at Gran Sasso in Italy, and the IceCube project in Antarctica.

The Minister of Science for the state of Rhineland-Palatinate, Doris Ahnen, also recognized the success of PRISMA in the German Excellence Initiative: "The start of funding for PRISMA is the culmination of years of hard work and an internationally renowned success story for both Johannes Gutenberg University Mainz and, in particular, Mainz physicists, of whom I am very proud." The state has made an important financial contribution especially within the framework of its research initiative. So, in total, EUR 100 million will be available to the four Rhineland-Palatinate universities until 2013, in addition to their basic funding. This money will be used solely to promote and sustain research so that strong research associations can be established and expanded and so that researchers will benefit from an unparalleled infrastructure.

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/presse/15817_ENG_HTML.php
http://www.prisma.uni-mainz.de/
http://www.dfg.de/en/research_funding/programmes/excellence_initiative/index.html

Further reports about: Cluster of Excellence Excellence Award JGU MESA Prisma dark matter

More articles from Physics and Astronomy:

nachricht Physicists precisely measure interaction between atoms and carbon surfaces
29.05.2015 | University of Washington

nachricht How comets were assembled
29.05.2015 | Universität Bern

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Wie Solarzellen helfen, Knochenbrüche zu finden

FAU-Forscher verwenden neues Material für Röntgendetektoren

Nicht um Sonnenlicht geht es ihnen, sondern um Röntgenstrahlen: Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) haben zusammen mit...

Im Focus: Festkörper-Photonik ermöglicht extrem kurzwellige UV-Strahlung

Mit ultrakurzen Laserpulsen haben Wissenschaftler aus dem Labor für Attosekundenphysik in dünnen dielektrischen Schichten EUV-Strahlung erzeugt und die zugrunde liegenden Mechanismen untersucht.

Das Jahr 1961, die Erfindung des Lasers lag erst kurz zurück, markierte den Beginn der nichtlinearen Optik und Photonik. Denn erstmals war es Wissenschaftlern...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Szenario 2050: Ein Wurmloch in Big Apple

Andy ist Physiker und wohnt in New York. Obwohl er schon seit fünf Jahren im Big Apple arbeitet, ist ihm die Stadt immer noch fremd – zu laut, zu hektisch, zu schmutzig. Wie soll das in Zukunft weitergehen? Die Antwort erfährt er prompt – und am eigenen Leib.

„New York – die Stadt, die niemals schläft.“ Lieber Franky Boy Sinatra, ich bin ganz bei Dir. Schon 1977 hattest du mit deinem Song ganz recht. Einen wichtigen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Cannabis – eine andauernde Kontroverse

29.05.2015 | Veranstaltungen

Frauen können nicht alles haben - Männer aber schon?!

29.05.2015 | Veranstaltungen

13. Koblenzer eLearning Tage

28.05.2015 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Superelastische Metalle ohne Ermüdung: Kieler Forschende entwickeln neues intelligentes Material

29.05.2015 | Materialwissenschaften

Innovative Therapie verbessert Lebensqualität bei Morbus Parkinson

29.05.2015 | Medizin Gesundheit

Wie Kometen entstanden sind

29.05.2015 | Physik Astronomie