Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hubble-Bubble soll unterschiedliche Messergebnisse zum Wachstum des Universums erklären

27.08.2013
Heidelberger Wissenschaftler entwickeln theoretisches Modell zur Interpretation der Daten des Planck-Satelliten

Unterschiedliche Messergebnisse zum Wachstum und damit zum Alter des Universums können zumindest teilweise durch die Existenz sogenannter Hubble-Bubbles erklärt werden. Davon geht ein Team von Physikern um Prof. Dr. Luca Amendola vom Institut für Theoretische Physik der Ruperto Carola aus.

In Zusammenarbeit mit Kollegen aus den Niederlanden entwickelten die Heidelberger Physiker ein theoretisches Modell, nach dem die Milchstraße in einer solchen kosmischen Blase liegt. Auf diesem Weg lässt sich nach Angaben der Wissenschaftler ein Teil der Abweichungen erklären, die die aktuellen Messwerte des Planck-Satelliten der Europäischen Weltraumorganisation ESA gegenüber bisherigen Messungen aufweisen. Die Forschungsergebnisse wurden im Fachjournal „Physical Review Letters“ veröffentlicht.

Der von uns beobachtbare Teil des Universums expandiert seit dem Urknall und dehnt sich bis heute stetig weiter aus. Dies führt dazu, dass Galaxien von unserer Milchstraße fort getrieben werden. Die aktuelle Geschwindigkeit dieses Wachstums wird als Hubble-Konstante bezeichnet. Sie zu bestimmen, gehört zu den Aufgaben der modernen Kosmologie, da sie unter anderem für die Berechnung grundlegender Eigenschaften des Universums, wie etwa seines Alters, bedeutsam ist. Für die Bestimmung der Hubble-Konstante gibt es zwei gebräuchliche Messmethoden, deren Ergebnisse jedoch nicht deckungsgleich sind, wie Dr. Valerio Marra vom Institut für Theoretische Physik der Ruperto Carola erläutert: „Dies führt in der Wissenschaft seit langem zu intensiven und anhaltenden Diskussionen.“

Ein Weg, die Hubble-Konstante und damit die Expansionsrate des Universums zu bestimmen, beruht darauf, die als kosmischer Mikrowellenhintergrund bekannte Strahlung im Weltall zu messen. Diese wurde rund 400.000 Jahre nach dem Urknall freigesetzt und durchzieht das gesamte Universum. Messergebnisse aus dieser uralten Strahlung ermittelte vor wenigen Monaten das Weltraumteleskop Planck der ESA. Im Vergleich dazu lässt sich die Hubble-Konstante ebenfalls aus der – größtenteils auf die Expansion des Universums zurückgehenden – Bewegung von Galaxien in der Nachbarschaft der Milchstraße ableiten. „Vergleicht man die Messwerte beider Methoden, ergibt sich eine Abweichung von rund neun Prozent“, sagt Dr. Marra.

Auf der Suche nach einer Erklärung dieses Unterschieds der Daten gingen die Heidelberger Forscher davon aus, dass es sich nicht um einen bisher unerkannten Messfehler handelt, sondern die Abweichungen auf einen physikalischen Effekt zurück gehen. Eine Ursache dafür könnte nach Ansicht von Dr. Marra die Existenz von Hubble-Bubbles sein. Hiermit werden Regionen im Universum bezeichnet, in denen die Dichte der Materie unter dem kosmischen Mittelwert liegt. „Die Kenntnis unserer kosmischen Nachbarschaft ist bisher zu ungenau, um feststellen zu können, ob wir uns in solch einer Blase befinden“, erklärt Dr. Marra. „Nehmen wir jedoch einmal an, dass unsere Milchstraße in einer Hubble-Bubble liegt. Dann würde die Materie außerhalb der Blase die Galaxien in unserer Nachbarschaft stark anziehen, so dass sich diese überdurchschnittlich stark bewegen. In diesem Fall würden wir eine erhöhte Hubble-Konstante messen, die zwar für unsere kosmologische Nachbarschaft gilt, nicht jedoch für das Universum als Ganzes.“

Dies könnte nach den Worten Dr. Marras zum Teil den „Konflikt“ der unterschiedlichen Messergebnisse erklären: Bei der vom Planck-Satelliten gemessenen Hubble-Konstante handele es sich dann um einen räumlichen Mittelwert, der für das Universum als Ganzes gelte. Die anhand der Galaxienbewegung bestimmte Hubble-Konstante gälte dann jedoch nur in der Umgebung der Milchstraße. „Wer erwartet, dass die Messungen aus unserer kosmischen Nachbarschaft dieselben Ergebnisse wie die der Mikrowellenstrahlung ergeben, der nimmt dabei implizit an, dass wir in einer typischen Region des Kosmos leben. Das muss jedoch nicht sein“, erklärt Prof. Amendola, dessen Arbeitsgruppe sich seit vielen Jahren mit der Expansion des Kosmos beschäftigt.

Mit ihrem Forschungsansatz können die Wissenschaftler bislang rund ein Viertel der Abweichung zwischen den beiden Hubble-Konstanten begründen. Von einer detaillierteren Analyse erwarten Dr. Marra und seine Kollegen, dass sich die Diskrepanz noch weiter reduzieren lässt. „Bisher arbeiten wir in unserem Modell mit einer kugelförmigen Hubble-Bubble. Aber es ist viel wahrscheinlicher, dass eine solche Blase eine asymmetrische Form aufweist, wodurch sich die abweichenden Messwerte wahrscheinlich noch besser erklären lassen“, sagt Dr. Ignacy Sawicki, der ebenfalls am Institut für Theoretische Physik der Universität Heidelberg forscht. „Sollte sich der Unterschied der Daten stattdessen manifestieren, wäre dies ein wichtiger Hinweis darauf, dass in der bisherigen naturwissenschaftlichen Vorstellung des Kosmos noch eine Zutat fehlt“, betont Dr. Sawicki.

An den Forschungsarbeiten im Team von Prof. Amendola hat neben Dr. Marra und Dr. Ignacy Sawicki auch Dr. Wessel Valkenburg vom Instituut-Lorentz der Universität Leiden mitgewirkt. Die Arbeiten wurden durch den Sonderforschungsbereich/Transregio „The Dark Universe“ unterstützt.

Originalveröffentlichung:
V. Marra, L. Amendola, I. Sawicki, and W. Valkenburg; Cosmic Variance and the Measurement of the Local Hubble Parameter, Physical Review Letters 110, 241305 (2013), DOI: 10.1103/PhysRevLett.110.241305
Kontakt:
Dr. Valerio Marra
Institut für Theoretische Physik
Telefon (06221) 54-9414
marra@thphys.uni-heidelberg.de
Kommunikation und Marketing
Pressestelle
Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantenmechanik ist komplex genug – vorerst …
21.04.2017 | Universität Wien

nachricht Tief im Inneren von M87
20.04.2017 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Im Focus: Tief im Inneren von M87

Die Galaxie M87 enthält ein supermassereiches Schwarzes Loch von sechs Milliarden Sonnenmassen im Zentrum. Ihr leuchtkräftiger Jet dominiert das beobachtete Spektrum über einen Frequenzbereich von 10 Größenordnungen. Aufgrund ihrer Nähe, des ausgeprägten Jets und des sehr massereichen Schwarzen Lochs stellt M87 ein ideales Laboratorium dar, um die Entstehung, Beschleunigung und Bündelung der Materie in relativistischen Jets zu erforschen. Ein Forscherteam unter der Leitung von Silke Britzen vom MPIfR Bonn liefert Hinweise für die Verbindung von Akkretionsscheibe und Jet von M87 durch turbulente Prozesse und damit neue Erkenntnisse für das Problem des Ursprungs von astrophysikalischen Jets.

Supermassereiche Schwarze Löcher in den Zentren von Galaxien sind eines der rätselhaftesten Phänomene in der modernen Astrophysik. Ihr gewaltiger...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: Neu entdeckter Exoplanet könnte bester Kandidat für die Suche nach Leben sein

Supererde in bewohnbarer Zone um aktivitätsschwachen roten Zwergstern gefunden

Ein Exoplanet, der 40 Lichtjahre von der Erde entfernt einen roten Zwergstern umkreist, könnte in naher Zukunft der beste Ort sein, um außerhalb des...

Im Focus: Resistiver Schaltmechanismus aufgeklärt

Sie erlauben energiesparendes Schalten innerhalb von Nanosekunden, und die gespeicherten Informationen bleiben auf Dauer erhalten: ReRAM-Speicher gelten als Hoffnungsträger für die Datenspeicher der Zukunft.

Wie ReRAM-Zellen genau funktionieren, ist jedoch bisher nicht vollständig verstanden. Insbesondere die Details der ablaufenden chemischen Reaktionen geben den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

Baukultur: Mehr Qualität durch Gestaltungsbeiräte

21.04.2017 | Veranstaltungen

Licht - ein Werkzeug für die Laborbranche

20.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligenter Werkstattwagen unterstützt Mensch in der Produktion

21.04.2017 | HANNOVER MESSE

Forschungszentrum Jülich auf der Hannover Messe 2017

21.04.2017 | HANNOVER MESSE

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungsnachrichten