Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Holografie mit Elektronen

17.12.2010
Der Ungar Dennis Gábor entdeckte 1947 in theoretischen Arbeiten das Prinzip der Holografie, als er versuchte, die Auflösung von Elektronenmikroskopen zu verbessern.

urchgesetzt hat sich die Holografie aber erstmals in den 60er Jahren mit der Erfindung des Lasers – sie funktioniert also auch mit Licht. Physiker vom Max-Born-Institut (MBI) in Berlin sind jetzt quasi wieder zu den Anfängen zurück gekehrt, indem sie Holografie mit Elektronen betreiben.


Experimentelle Messung von Elektronen, die von dem 7 Mikrometer FELICE Laser aus Xenonatomen ionisiert wurden. Das Bild zeigt die Geschwindigkeitsverteilung entlang der (horizontal) und senkrecht zur (vertikal) Polarisationsrichtung. Abb.: MBI

Das besondere an ihrer Methode: Die Elektronen, welche das Objekt aufzeichnen, werden zuvor mit einem Laser aus diesem heraus geschossen, stammen also vom Objekt selbst. Die Wissenschaftler berichten darüber in der Onlineausgabe von Science.

Die Holografie, so wie sie den meisten bekannt ist, benötigt kohärentes Licht – also Lichtwellen, die in völligem Gleichklang schwingen. Das Licht wird in zwei Strahlen geteilt, die Referenzwelle und die Objektwelle. Die Referenzwelle fällt direkt auf einen zweidimensionalen Detektor, zum Beispiel eine Fotoplatte. Die Objektwelle beleuchtet ein Objekt und wird an diesem gestreut, dann fällt auch sie auf den Detektor. Dabei überlagern sich die beiden Lichtwellen und es entsteht ein Interferenzmuster, das über die dreidimensionale Form des Objektes Auskunft gibt.

Was Gábor nicht konnte, nämlich eine Quelle für kohärente Elektronenstahlen konstruieren, ist bei Physikern, die mit starken Laserfeldern experimentieren, schon fast Standard. Sie schießen mit ultrastarken, ultrakurzen Laserpulsen Elektronen aus Atomen und Molekülen heraus, dies nennt man Ionisierung. Solche Elektronen sind kohärent und bildeten deshalb die Basis für das neue Holografie-Experiment mit Xenonatomen. Marc Vrakking vom MBI beschreibt, was bei der Ionisierung grundsätzlich passiert: „Durch das starke Laserfeld werden die Elektronen vom Atom weggerissen. Weil das Laserfeld schwingt, schnipsen einige von ihnen wie von einem Gummiband gehalten wieder zurück. Sie bewegen sich also in Richtung Atom und damit haben wir eine perfekte Elektronenquelle.“

Die herausgeschossenen Elektronen haben nun verschiedene Möglichkeiten: Manche vereinigen sich wieder mit dem Atom und erzeugen dabei extrem ultra-violettes (XUV) Licht, das die Basis für die heutige Attosekundenphysik ist, eines der neuen Hauptthemen am MBI. Die meisten Elektronen fliegen aber am Atom vorbei und bilden in den Holografie-Experimenten die Referenzwelle. Die Elektronen, welche vom Atom gestreut werden, bilden die Objektwelle. Die Wissenschaftler fingen die Elektronen mit einem Detektor auf und konnten ein charakteristisches Interferenzmuster beobachten, das den dreidimensionalen Zustand des Xenonatoms wiedergibt.

Dabei dem waren im Experiment bestimmte Bedingungen nötig: Um ein klares holografisches Bild zu erhalten, durfte die Referenzwelle nicht von dem positiv geladenen Objekt, also dem Xenonion, beeinflusst werden. Die Elektronenquelle sollte sich deshalb möglichst weit entfernt vom Objekt befinden. Aus diesem Grund führten die Forscher die Experimente mit dem Freie-Elektronenlaser FELICE (Free Electron Laser for Intracavity Experiments) durch, der langwelliges Licht im Bereich von 4 bis 40 Mikrometer aussendet. Solche Wellen „entführen“ die Elektronen besonders weit vom Atom weg, bevor sie sie wieder zurückbringen.

Die Elektronen werden bei der Ionisation mit minimalen Verzögerungen produziert, diese liegen unter einer Femtosekunde. Die Forscher konnten so über theoretische Berechnungen zeigen, dass sie zeitaufgelöste holografische Bilder erhalten hatten. Ein exaktes dreidimensionales Bild des Xenonatoms können sich die Wissenschaftler aus den Interferenzmustern zwar noch nicht konstruieren, aber Vrakking hält so etwas in Zukunft durchaus für möglich. „Wir haben erstmalig gezeigt, dass Holografie auf atomaren Größenskalen und zeitaufgelöst mit dieser Methode möglich ist“, sagt er. Dies eröffne neu Möglichkeiten für die zeitaufgelöste Beobachtung von Molekülen.

Die Arbeiten erfolgten in Zusammenarbeit mit Forschern aus den FOM Instituten AMOLF und Rijnhuizen, Niederlande.

DOI:10.1126/science.1198450

Kontakt:
Prof. Marc Vrakking, Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Tel.: 030-6392 1200, Mobil: 0151-57153446, E-Mail: marc.vrakking@mbi-berlin.de , vrakking@amolf.nl

Christine Vollgraf | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.fv-berlin.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall
22.08.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten
21.08.2017 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer IPM präsentiert »Deep Learning Framework« zur automatisierten Interpretation von 3D-Daten

22.08.2017 | Informationstechnologie

Globale Klimaextreme nach Vulkanausbrüchen

22.08.2017 | Geowissenschaften

RWI/ISL-Containerumschlag-Index erreicht neuen Höchstwert

22.08.2017 | Wirtschaft Finanzen