Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hohe Auflösung ohne Teilchenbeschleuniger

07.08.2017

Physiker der Universität Jena führen erstmals optische Kohärenztomografie mit XUV-Strahlung im Labormaßstab durch

Beim Augenarzt gehört sie fast schon zum Standardprogramm: die optische Kohärenztomografie. Mit diesem Bildgebungsverfahren lassen sich durch Infrarotstrahlung die verschiedenen Schichten der Netzhaut durchdringen und dreidimensional genauer untersuchen, ohne dass das Auge überhaupt berührt werden muss. Mediziner können so Erkrankungen wie den Grünen Star ohne Eingriff erkennen.


Der Jenaer Physiker Silvio Fuchs in einem Labor am Institut für Optik und Quantenelektronik der Universität Jena.

Foto: Jan-Peter Kasper/FSU

Doch diese Methode hätte noch weitaus größeres Potenzial für die Naturwissenschaften, wenn man die Wellenlänge der verwendeten Strahlung stärker verkürzen und somit eine höhere Auflösung des Bildes erhalten könnte. Physikern der Friedrich-Schiller-Universität Jena ist genau das jetzt gelungen. Über ihre Forschungsergebnisse berichten sie in der aktuellen Ausgabe des Fachmagazins „Optica“ (DOI: 10.1364/OPTICA.4.000903).

Erste XUV-Kohärenztomografie im Labormaßstab

Die Jenaer Physiker verwendeten für das Verfahren erstmals im eigenen Labor erzeugte extreme ultraviolette Strahlung (XUV) und führten somit die erste XUV-Kohärenztomografie im Labormaßstab durch. Die Wellenlänge dieser Strahlung liegt bei etwa 20 bis 40 Nanometer – von dort ist es also nur noch ein kleiner Schritt bis zum Röntgenbereich.

„Um XUV-Strahlung zu erzeugen, sind normalerweise Großgeräte, also Teilchenbeschleuniger wie das Deutsche Elektronen-Synchroton in Hamburg, notwendig“, erklärt Silvio Fuchs vom Institut für Optik und Quantenelektronik der Universität Jena. „Demzufolge wäre eine Untersuchungsmethode dieser Art also sehr aufwendig, teuer und nur für wenige Forscher verfügbar.“

Die Jenaer Physiker konnten diese Methode bereits an Großforschungsanlagen demonstrieren, doch nun haben sie eine Möglichkeit gefunden, sie auch im kleineren Maßstab anwenden zu können.

Dazu fokussierten die Forscher der Uni Jena einen ultrakurzen, sehr intensiven Infrarotlaser in ein Edelgas, etwa Argon oder Neon. „Durch einen Ionisationsprozess werden die Elektronen im Gas beschleunigt“, erklärt Fuchs. „Diese emittieren dann die XUV-Strahlung.“

Zwar sei diese Methode sehr ineffizient, da nur etwa ein Millionstel der Laserstrahlung auch tatsächlich vom infraroten in den extrem ultravioletten Bereich umgewandelt werde, aber dieser Verlust lasse sich durch den Einsatz von sehr starken Laserquellen ausgleichen. „Die Rechnung ist einfach. Je mehr wir hineingeben, desto mehr bekommen wir auch heraus“, sagt der Jenaer Experte.

Starke Bildgebungskontraste entstehen

Der Vorteil der XUV-Kohärenztomografie ist, neben der sehr hohen Auflösung, dass die Strahlung stark mit der Probe interagiert, denn verschiedene Stoffe reagieren unterschiedlich auf das Licht. Einige absorbieren mehr und andere weniger. Es entstehen also starke Bildgebungskontraste, die den Forschern wichtige Informationen, etwa über die materielle Zusammensetzung des zu untersuchenden Objektes, liefern.

„Wir haben beispielsweise zerstörungsfrei dreidimensionale Abbildungen von Siliziumchips erstellt, auf denen man das Trägermaterial und aus anderen Materialien bestehende Strukturen gut voneinander unterscheiden kann“, erklärt Silvio Fuchs. „Sollte dieses Verfahren auch in der Biologie Anwendung finden – etwa bei der Untersuchung von Zellen, was eines unserer Ziele ist –, dann wäre dort das vorherige Einfärben der Proben, wie in anderen hochauflösenden Mikroskopiemethoden üblich, nicht nötig. Elemente wie Kohlenstoff, Sauerstoff und Stickstoff würden selbst den Kontrast liefern.“

Bis dahin haben die Physiker der Universität Jena aber noch einige Arbeit vor sich. „Mit unserer bisherigen Lichtquelle erzeugen wir eine Tiefenauflösung von bis zu 24 Nanometer. Das reicht zwar schon aus, um kleine Strukturen, beispielsweise in Halbleitern abzubilden, jedoch liegen die Strukturgrößen aktueller Chips teilweise bereits unter dieser Marke. Mit neuen noch stärkeren Lasern sollte es aber in Zukunft möglich sein, mit der Methode bis zu drei Nanomater Tiefenauflösung zu erreichen“, informiert Fuchs.

„Grundsätzlich haben wir gezeigt, dass man diese Methode im Labormaßstab verwenden kann.“ Langfristiges Ziel könne es schließlich sein, ein preisgünstiges und bedienungsfreundliches Gerät zu entwickeln, das Laser und Mikroskop vereint und etwa der Halbleiterindustrie oder biologischen Laboren dieses Bildgebungsverfahren unkompliziert ermöglicht.

Original-Publikation:
Silvio Fuchs et al.: „Optical coherence tomography with nanoscale axial resolution using a laser-driven high-harmonic source“, Optica (2017) Vol. 4, Issue 8, 903-906, https://doi.org/10.1364/OPTICA.4.000903

Kontakt:
Silvio Fuchs
Institut für Optik und Quantenelektronik der Friedrich-Schiller-Universität Jena
Max-Wien-Platz 1, 07743 Jena
Tel.: 03641 / 947615
E-Mail: silvio.fuchs[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de

Sebastian Hollstein | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Weniger (Flug-)Lärm dank Mathematik
21.09.2017 | Forschungszentrum MATHEON ECMath

nachricht Der stotternde Motor im Weltall
21.09.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften